Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Environ Sci Pollut Res Int ; 31(2): 2987-3003, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38079046

ABSTRACT

Woody plants possess great potential for phytoremediation of heavy metal-contaminated soil. A pot trial was conducted to study growth, physiological response, and Cd and Pb uptake and distribution in black locust (Robinia pseudoacacia L.), as well as the rhizosphere bacterial communities in Cd and Pb co-contaminated soil. The results showed that R. pseudoacacia L. had strong physiological regulation ability in response to Cd and Pb stress in contaminated soil. The total chlorophyll, malondialdehyde (MDA), soluble protein, and sulfhydryl contents, as well as antioxidant enzymes (superoxide dismutase, peroxidase, catalase) activities in R. pseudoacacia L. leaves under the 40 mg·kg-1 Cd and 1000 mg·kg-1 Pb co-contaminated soil were slightly altered. Cd uptake in R. pseudoacacia L. roots and stems increased, while the Pb content in the shoots of R. pseudoacacia L. under the combined Cd and Pb treatments decreased in relative to that in the single Pb treatments. The bacterial α-diversity indices (e.g., Sobs, Shannon, Simpson, Ace, and Chao) of R. pseudoacacia L. rhizosphere soil under Cd and Pb stress were changed slightly relative to the CK treatment. However, Cd and Pb stress could significantly (p < 0.05) alter the rhizosphere soil microbial communities. According to heat map and LEfSe (Linear discriminant analysis Effect Size) analysis, Bacillus, Sphingomonas, Terrabacter, Roseiflexaceae, Paenibacillus, and Myxococcaceae at the genus level were notably (p < 0.05) accumulated in the Cd- and/or Pb-contaminated soil. Furthermore, the MDA content was notably (p < 0.05) negatively correlated with the relative abundances of Isosphaeraceae, Gaiellales, and Gemmatimonas. The total biomass of R. pseudoacacia L. was positively (p < 0.05) correlated with the relative abundances of Xanthobacteraceae and Vicinamibacreraceae. Network analysis showed that Cd and Pb combined stress might enhance the modularization of bacterial networks in the R. pseudoacacia L. rhizosphere soil. Thus, the assembly of the soil bacterial communities in R. pseudoacacia L. rhizosphere may improve the tolerance of plants in response to Cd and/or Pb stress.


Subject(s)
Metals, Heavy , Robinia , Soil Pollutants , Cadmium/analysis , Lead/analysis , Metals, Heavy/analysis , Bacteria/metabolism , Soil , Soil Pollutants/analysis , Biodegradation, Environmental
2.
Huan Jing Ke Xue ; 41(3): 1319-1328, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608633

ABSTRACT

Three typical porous solid wastes, including livestock manure, crop straw, and coal mining waste, were used as raw materials to prepare cattle manure charcoal, straw charcoal, and coal gangue charcoal by low-oxygen controlling temperature carbonization and calcination. Batch adsorption experiments of sulfamethazine (SMZ) in water were carried out. Adsorption kinetics and isothermal adsorption equilibrium were used to investigate the adsorption characteristics of SMZ on cattle dung charcoal, straw charcoal, and coal gangue charcoal, and the adsorption mechanism was discussed by means of field-electron scanning electron microscope, Fourier transform infrared spectroscopy, Boehm titration, Brunauer-Emmett-Teller measurement, and zeta potentiometric titration. The results showed that the adsorption of SMZ on the three carbon materials reached equilibrium at 24 h. The adsorption kinetics of SMZ on three kinds of carbon materials agreed with the quasi-second-order kinetics equation. R2 ranged from 0.9968 to 0.9999, and the adsorption rate decreased with the decrease in effective adsorption sites on the surface of carbon materials. The adsorption process mainly consists of three steps:membrane diffusion, intraparticle diffusion, and the equilibrium stage. Both intraparticle diffusion and membrane diffusion control the adsorption rate. Isothermal adsorption is more consistent with the Freundlich model. R2 is between 0.9874 and 0.9997. It is mainly physical adsorption and spontaneous exothermic reaction. The maximum adsorption capacity of the three kinds of carbon materials was cattle dung carbon (19.64 mg·g-1) > coal gangue carbon (12.06 mg·g-1) > straw carbon (9.16 mg·g-1). The adsorption mechanism of SMZ on the three kinds of carbon materials mainly includes hydrogen bonding between molecules, surface electrostatic adsorption of multi-molecular layers, and pore filling. Of these, electrostatic adsorption is the main adsorption mechanism. The best adsorption performance of cattle manure charcoal may be due to its rich oxygen-containing functional groups, more negative charges, and larger specific surface area and pore volume.

3.
Huan Jing Ke Xue ; 41(6): 2688-2697, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608784

ABSTRACT

Enrofloxacin (ENR), a fluoroquinolones antibiotic, is widely used in the medical and aquaculture fields. Its residues in surface waters in China are high. However, few studies have evaluated both its toxicity to phytoplankton and the degradation or removal by microalgae. In this study, the growth, photosynthetic activity, and exopolysaccharides (EPS) of freshwater micro-green algae Dictyosphaerium sp. and the dynamics of ENR concentrations (0, 5, 25, 50, and 100 mg·L-1) were studied through an exposure experiment for 12 days. Results showed that the biomass and photosynthetic pigment content of Dictyosphaerium sp. increased with increasing exposure time in each treatment; however, it showed a significant inhibitory effect on the growth and pigment accumulation of Dictyosphaerium sp. compared with the control group (P<0.01). The LC50 of ENR to Dictyosphaerium sp. was (241.29±7.33) mg·L-1 after 96-h exposure, indicating that Dictyosphaerium sp. could adapt to the stress conditions of high concentration ENR. Meanwhile, when the concentration of enrofloxacin was<5 mg·L-1, it was found to promote the maximum photosynthetic rate (Fv/Fm) of Dictyosphaerium sp. On the contrary, when the concentration of enrofloxacin was>5 mg·L-1, photosynthetic inhibition was observed (P<0.01). The actual photosynthetic rate (Yield) and the maximum electron transfer rate (ETRmax) showed a trend of initially decreasing and then increasing in 12 days. It can gradually adapt to the stress conditions and recover certain photosynthetic activity after 6 days' exposure. In addition, ENR can also stimulate the EPS (RPS and CPS) release. At the end of the experiment, the removal rates of ENR in the four control groups (no algae addition groups) (5, 25, 50, and 100 mg·L-1ENR) were 7.27%, 5.56%, 5.30%, and 4.88%, respectively, while the removal rates of the treatment groups were 3.21, 3.01, 2.69, and 2.83 times of the no algae groups, indicating that Dictyosphaerium sp. had a significant promoting effect on the removal of ENR (P<0.01). Overall, our results can provide new insights for the understanding of the ecological toxicity of fluoroquinolone antibiotics to primary producers in the aquatic system and also provide new ideas for the ecological removal of antibiotic residues in water bodies and the biological resource utilization of freshwater microalgae.


Subject(s)
Chlorophyta , Water Pollutants, Chemical/analysis , China , Enrofloxacin , Fluoroquinolones/analysis , Fresh Water
4.
Biomaterials ; 195: 13-22, 2019 03.
Article in English | MEDLINE | ID: mdl-30599289

ABSTRACT

Pancreatic cancer is one of the most lethal malignancies worldwide. The existing therapeutic regimen in the clinic for advanced inoperable carcinomas are far from satisfactory, thus it is urgent to seek more effective anticancer strategies. In the pursuit of novel, more effective interventions, photothermal therapy (PTT) based on nanomaterials has attracted increased attention. Recent advances in related fields have catalyzed the generation of novel nanoprobes, such as organic dyes, metal nanoparticles. However, organic dyes are poorly stable and easy to quench while metal nanoparticles with potential metal toxicity are difficult to degrade, both of which have low light-to-heat conversion efficiency, broad spectrum of anti-tumor effects, and lack of tumor targeting specificity. Single-walled carbon nanotubes (SWNTs) can remedy the above inadequacies. Herein, we report our water-soluble, bio-stable and low-toxicity SWNTs with excellent photothermal conversion efficiency. Specific modifications can enable visualization of the aggregate characteristics of SWNTs at the macroscopic or microscopic level in tumors. The dye-conjugated SWNTs bound with targeting antibodies that can induce them specifically targeting to pancreatic tumors for purposes of performing dyes imaging-guided cytotoxic PTT. PTT using this method achieves precise and excellent curative effects with minimal adverse effects, thus providing a promising strategy for anticancer therapy.


Subject(s)
Nanotubes, Carbon/chemistry , Optical Imaging/methods , Pancreatic Neoplasms/therapy , Phototherapy/methods , Receptor, IGF Type 1/chemistry , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...