Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 341: 140032, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659508

ABSTRACT

CuFeS2 is regarded as a promising catalyst for heterogeneous activation to remove organic contaminants in wastewater. However, effects of solvents in regulating material synthesis and catalytic activity are still not clear. Herein, we reported the role of water, ethanol, ethylene glycol (EG), glycerol, and polyethylene glycol 200 on the synthesis of CuFeS2 micro-flowers and their performance in activating persulfate (PS) to remove imidacloprid (IMI) pesticide. The results showed that the solvent had an effect on the morphology, crystallinity, yields, specific surface areas and unpaired electrons of CuFeS2 micro-flowers. The degradation experiments revealed the efficient catalytic activity of EG-mediated CuFeS2 for heterogeneous PS activation. SO4•- and •OH were identified in EG-CuFeS2/PS system and •OH (90.4%) was the dominant reactive species. Meanwhile, stable 20% of η[PMSO2] (the molar ratio of PMSO2 generation to PMSO consumption) was achieved and demonstrated that Fe(IV) was also involved in the degradation process. Moreover, S2- promoted the cycling of Fe3+/Fe2+ and Cu2+/Cu+, enhancing the synergistic activation and reusability of the catalyst. Density functional theory (DFT) calculations verified that PS was adsorbed by Fe atom and electron transfer occurred on the catalyst surface. Three possible degradation pathways of IMI were proposed by analysis of the degradation intermediates and their toxicities were evaluated by ECOSAR. This study not only provides a theoretical foundation for catalyst design, but also promotes the industrial application of bimetallic sulfide Fenton-like catalysts for water management.


Subject(s)
Ethylene Glycol , Water Pollutants, Chemical , Oxidation-Reduction , Nitro Compounds , Sulfides , Water , Glycols , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 194(10): 737, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36068415

ABSTRACT

Solvents, components of pesticide emulsifiable concentrates (ECs), emit quantities of volatile organic compounds (VOCs) into the atmosphere. In the air, their active involvement in oxidative chemical reactions with oxidants exposed to ultraviolet solar radiation can result in the formation of ozone. The quantitative assessment of VOC emissions from agricultural pesticide applications remains hampered by many factors, especially the volatility coefficient of solvents in pesticides. Therefore, this study identified solvents in 20 widely used pesticide products in China. The volatility coefficients of the solvents were investigated based on a spraying test to evaluate VOC emissions from agricultural pesticide applications and their ozone formation potential (OFP). The results suggest that VOC emissions from agricultural pesticide applications amount to 0.60 Mt in 2017, with insecticides, fungicides, and herbicides contributing 0.39 Mt, 0.12 Mt, and 0.09 Mt of VOCs, respectively. Since VOC emission and maximum incremental reactivity (MIR) led to an OFP value (2.1 g ozone/g product) for insecticides, a primary consideration should be to decrease use of solvents with high volatility coefficients and large MIR values in insecticide products. This work could provide valuable insights regarding response options to reduce VOC emissions and ozone formation.


Subject(s)
Air Pollutants , Insecticides , Ozone , Pesticides , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring/methods , Ozone/analysis , Solvents , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...