Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol (Tokyo) ; 35(3): 207-213, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-31819725

ABSTRACT

Apple MdMADS13 has a transcription factor with MADS domain. Moreover, it is expressed specifically at petals and carpels. The product forms a dimer with MdPISTILLATA (MdPI) protein as a class B gene for floral organ formation. Reportedly, in parthenocarpic cultivars of apple (Spencer Seedless, Wellington Bloomless, Wickson and Noblow) the MdPI function is lost by genome insertion of retrotransposon, which cultivars show a homeotic mutation of floral organs, petals to sepals and stamens to carpels. Apple fruit is pome from receptacle tissue, and MdSEPALLATA (MdMADS8/9) and AGAMOUS homologues MdMADS15/22 involved in the fruit development, the transgenic apple suppressed these gene showed poor fruit development and abnormal flower formation. This article describes that the MdMADS13 retained expression after blossom and small fruits of parthenocarpic cultivars. Yeast two-hybrid experiment showed specific binding between MdPI and MdMADS13 proteins. Furthermore, transgenic Arabidopsis with 35S::MdMADS13 have malformed stamens and carpels. These results suggest strongly that MdMADS13 is related to flower organ formation as a class B gene with MdPI.

2.
DNA Res ; 23(3): 271-82, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27085183

ABSTRACT

Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops.


Subject(s)
Genome, Plant , Plant Breeding , Polymorphism, Genetic , Prunus persica/genetics , Selection, Genetic
3.
Sex Plant Reprod ; 22(3): 179-86, 2009 Sep.
Article in English | MEDLINE | ID: mdl-20033438

ABSTRACT

Self-compatibility has become the primary objective of most almond (Prunus amygdalus Batsch) breeding programmes in order to avoid the problems related to the gametophytic self-incompatibility system present in almond. The progeny of the cross 'Vivot' (S(23)S(fa)) x 'Blanquerna' (S(8)S(fi)) was studied because both cultivars share the same S(f) allele but have a different phenotypic expression: active (S(fa)) in 'Vivot' and inactive (S(fi)) in 'Blanquerna'. In addition, the microscopic observation of pollen tube growth after self-pollination over several years showed an unexpected self-incompatible behaviour in most seedlings of this cross. The genotypes of this progeny showed that the S(fi) pollen from 'Blanquerna' was not able to grow down the pistils of 'Vivot' harbouring the S(fa) allele, confirming the active function of this allele against the inactive form of the same allele, S(fi). As self-compatibility was observed in some S(8)S(23) and S(8)S(fa) individuals of this progeny, the S(f) haplotype may not always be linked to the expression and transmission of self-compatibility in almond, suggesting that a modifier locus may be involved in the mechanism of self-incompatibility in plants.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Prunus/genetics , Ribonucleases/genetics , Breeding , Plant Proteins/metabolism , Prunus/enzymology , Prunus/physiology , Ribonucleases/metabolism
4.
Genetics ; 175(4): 1869-81, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17237509

ABSTRACT

Although recent findings suggest that the F-box genes SFB/SLF control pollen-part S specificity in the S-RNase-based gametophytic self-incompatibility (GSI) system, how these genes operate in the system is unknown, and functional variation of pollen S genes in different species has been reported. Here, we analyzed the S locus of two species of Maloideae: apple (Malus domestica) and Japanese pear (Pyrus pyrifolia). The sequencing of a 317-kb region of the apple S9 haplotype revealed two similar F-box genes. Homologous sequences were isolated from different haplotypes of apple and Japanese pear, and they were found to be polymorphic genes derived from the S locus. Since each S haplotype contains two or three related genes, the genes were named SFBB for S locus F-box brothers. The SFBB genes are specifically expressed in pollen, and variable regions of the SFBB genes are under positive selection. In a style-specific mutant S haplotype of Japanese pear, the SFBB genes are retained. Apart from their multiplicity, SFBB genes meet the expected characteristics of pollen S. The unique multiplicity of SFBB genes as the pollen S candidate is discussed in the context of mechanistic variation in the S-RNase-based GSI system.


Subject(s)
Genes, Plant , Malus/genetics , Pyrus/genetics , Amino Acid Sequence , Base Sequence , Chromosomes, Artificial, Bacterial/genetics , DNA, Plant/genetics , F-Box Proteins/genetics , Haplotypes , Japan , Molecular Sequence Data , Mutation , Phylogeny , Plant Proteins/genetics , Pollen/genetics , Polymorphism, Genetic , Ribonucleases/genetics , Sequence Homology, Amino Acid
5.
Plant Mol Biol ; 63(1): 109-23, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17006593

ABSTRACT

This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S (1), S (2), and S (2m), found in this study encode mutated pollen determinants, SFB, while only S (2m) has a mutation that affects the function of the pistil determinant S-RNase. A cysteine residue in the C5 domain of the S (2m)-RNase is substituted by a tyrosine residue, thereby reducing RNase stability. The peach SFB mutations are similar to the SFB mutations found in SC haplotypes of sweet cherry (P. avium) and Japanese apricot (P. mume). SFB (1) of the S (1) haplotype, a mutant version of almond (P. dulcis) S (k) haplotype, encodes truncated SFB due to a 155 bp insertion. SFB (2) of the S (2) and S (2m) haplotypes, both of which are mutant versions of the S (a) haplotype in Japanese plum (P. salicina), encodes a truncated SFB due to a 5 bp insertion. Thus, regardless of the functionality of the pistil determinant, all three peach S haplotypes are SC haplotypes. Our finding that peach has mutant versions of S haplotypes that function in almond and Japanese plum, which are phylogenetically close and remote species, respectively, to peach in the subfamily Prunoideae of the Roasaceae, provides insight into the SC/SI evolution in Prunus. We discuss the significance of SC pollen part mutation in peach with special reference to possible differences in the SI mechanisms between Prunus and Solanaceae.


Subject(s)
Haplotypes/genetics , Mutation , Plant Proteins/genetics , Prunus/genetics , Alleles , Amino Acid Sequence , Base Sequence , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Fertility/genetics , Gene Expression Regulation, Plant , Genetic Speciation , Models, Genetic , Molecular Sequence Data , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Prunus/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleases/genetics , Ribonucleases/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...