Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38251015

ABSTRACT

The environmental conditions of a lake are influenced by its type and various environmental forces such as water temperature, nutrients content, and longitude and latitude to which it is exposed. Due to population growth and development limits, former mining lakes are being converted to more lucrative land uses like those of recreational zones, agriculture, and livestock. The fungus Ganoderma lucidum has the potential to be utilised as a substitute or to perform synergistic bacteria-coupled functions in efficient contaminated lake water treatment. The purpose of this paper is to evaluate the water quality and water quality index (WQI) of an ex-mining lake named Main Lake in the Paya Indah Wetland, Selangor. Furthermore, the current work simulates the use of a Malaysian fungus in decolourising the contaminated ex-mining lake by the BioDeF system in a 300 mL jar inoculated with 10% (v/v) of pre-grown Ganoderma lucidum pellets for 48 h. According to the results, the lake water is low in pH (5.49 ± 0.1 on average), of a highly intense dark brownish colour (average reading of 874.67 ± 3.7 TCU), and high in iron (Fe) content (3.2422 ± 0.2533 mg/L). The water quality index of the lake was between 54.59 and 57.44, with an average value of 56.45; thus, the water was categorized as Class III, i.e., under-polluted water, according to the Malaysian Department of Environment Water Quality Index (DOE-WQI, DOE 2020). The batch bioreactor BioDeF system significantly reduced more than 90% of the water's colour. The utilization of Ganoderma lucidum as an adsorbent material offers a variety of advantages, as it is easily available and cultivated, and it is not toxic.

2.
Mol Biotechnol ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286973

ABSTRACT

In the world of fast fashion, textile industries are blooming rapidly to meet the consumer's demands. However, vast amounts of wastewater have been constantly produced, and it is becoming a serious environmental problem in the waterways. Although the technology for treating textile wastewater has been well reported and established, more sustainable efforts have taken the attention nowadays. Through the use of living Malaysian Ganoderma lucidum mycelial pellets (GL) and activated dolomite (AD) in the treatment system, the study explores the synergy between biosorption and physisorption as alternative treatment for textile wastewater. In the current work, mixture of GL premixed with AD (50:50; v/v) is used to treat industrial textile wastewater. The morphology, adsorption characteristics, and antibacterial activity of the adsorbents were studied. The mixture of adsorbents is capable of removing colours by 77.8% and reducing chemical oxygen demand (COD) by 75% within 48 h contact. Furthermore, the kinetic and adsorption had been studied and follow the pseudo-first-order kinetic model while both adsorption of Langmuir and Freundlich model was deduced from the treatment. In addition, antimicrobial activities from the treatment potentially reduced 10 × 101 CFU/mL after 48 h. The synergistic treatment by Ganoderma lucidum mycelial pellets and activated dolomite has immense potential in future wastewater treatment technology to obtain cleaner water.

3.
Article in English | MEDLINE | ID: mdl-33624249

ABSTRACT

The fungi-based technology, wild-Serbian Ganoderma lucidum (WSGL) as myco-alternative to existing conventional microbial-based wastewater treatment is introduced in this study as a potential alternative treatment. The mycoremediation is highly persistent for its capability to oxidatively breakdown pollutant substrates and widely researched for its medicinal properties. Utilizing the nonhazardous properties and high degradation performance of WSGL, this research aims to optimize mycoremediation treatment design for chemical oxygen demand (COD) and ammonia nitrogen (AN) removal in domestic wastewater based on proposed Model 1 (temperature and treatment time) and Model 2 (volume of pellet and treatment time) via response surface methodology (RSM). Combined process variables were temperature (0C) (Model 1) and the volume of mycelial pellets (%) (Model 2) against treatment time (hour). Response variables for these two sets of central composite design (CCD) were the removal efficiencies of COD (%) and AN (%). The regression line fitted well with the data with R2 values of 0.9840 (Model 1-COD), 0.9477 (Model 1-AN), 0.9988 (Model 2-COD), and 0.9990 (Model 2-AN). The lack of fit test gives the highest value of sum of squares equal to 9494.91 (Model 1-COD), 9701.68 (Model 1-AN), 23786.55 (Model 2-COD), and 13357.02 (Model 2-AN), with probability F values less than 0.05 showing significant models. The optimized temperature for Model 1 was at 25 °C within 24 h of treatment time with 95.1% COD and 96.3% AN removals. The optimized condition (temperature) in Model 1 was further studied in Model 2. The optimized volume of pellet for Model 2 was 0.25% in 24-h treatment time with 76.0% COD and 78.4% AN removals. Overall, the ascended sequence of high volume of pellet considered in Model 2 will slow down the degradation process. The best fit volume of pellet with maximum degradation of COD and AN is equivalent to 0.1% at 25 °C in 24 h. The high performance achieved demonstrates that the mycoremediation of G. lucidum is highly potential as part of the wastewater treatment system in treating domestic wastewater of high organic loadings.

SELECTION OF CITATIONS
SEARCH DETAIL
...