Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Oral Sci ; 15(1): 53, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052774

ABSTRACT

Elevated fibroblast growth factor 23 (FGF23) in X-linked hypophosphatemia (XLH) results in rickets and phosphate wasting, manifesting by severe bone and dental abnormalities. Burosumab, a FGF23-neutralizing antibody, an alternative to conventional treatment (phosphorus and active vitamin D analogs), showed significant improvement in the long bone phenotype. Here, we examined whether FGF23 antibody (FGF23-mAb) also improved the dentoalveolar features associated with XLH. Four-week-old male Hyp mice were injected weekly with 4 or 16 mg·kg-1 of FGF23-mAb for 2 months and compared to wild-type (WT) and vehicle (PBS) treated Hyp mice (n = 3-7 mice). Micro-CT analyses showed that both doses of FGF23-mAb restored dentin/cementum volume and corrected the enlarged pulp volume in Hyp mice, the higher concentration resulting in a rescue similar to WT levels. FGF23-mAb treatment also improved alveolar bone volume fraction and mineral density compared to vehicle-treated ones. Histology revealed improved mineralization of the dentoalveolar tissues, with a decreased amount of osteoid, predentin and cementoid. Better periodontal ligament attachment was also observed, evidenced by restoration of the acellular cementum. These preclinical data were consistent with the retrospective analysis of two patients with XLH showing that burosumab treatment improved oral features. Taken together, our data show that the dentoalveolar tissues are greatly improved by FGF23-mAb treatment, heralding its benefit in clinics for dental abnormalities.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Male , Mice , Animals , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/metabolism , Familial Hypophosphatemic Rickets/pathology , Fibroblast Growth Factor-23 , Retrospective Studies , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Bone and Bones/metabolism , Phosphates/metabolism , Phosphates/therapeutic use
2.
Front Physiol ; 14: 1102751, 2023.
Article in English | MEDLINE | ID: mdl-36776964

ABSTRACT

Fibroblast growth factor 23 (FGF23), a hormone, mainly produced by osteocytes, regulates phosphate and vitamin D metabolism. By contrast, 1,25-dihydroxyvitamin D3, the active form of vitamin D, has been shown to enhance FGF23 production. While it is likely that osteocytes are heterogenous in terms of gene expression profiles, specific subpopulations of Fgf23-expressing osteocytes have not been identified. Single-cell RNA sequencing (scRNA-seq) technology can characterize the transcriptome of an individual cell. Recently, scRNA-seq has been used for bone tissue analysis. However, owing to technical difficulties associated with isolation of osteocytes, studies using scRNA-seq analysis to characterize FGF23-producing osteocytes are lacking. In this study, we characterized osteocytes secreting FGF23 from murine femurs in response to calcitriol (1,25-dihydroxyvitamin D3) using scRNA-seq. We first detected Dmp1, Mepe, and Phex expression in murine osteocytes by in situ hybridization and used these as marker genes of osteocytes. After decalcification, enzyme digestion, and removal of CD45+ cells, femoral bone cells were subjected to scRNA-seq. We identified cell clusters containing osteocytes using marker gene expression. While Fgf23 expression was observed in some osteocytes isolated from femurs of calcitriol-injected mice, no Fgf23 expression was detected in untreated mice. In addition, the expression of several genes which are known to be changed after 1,25-dihydroxyvitamin D3 treatment such as Ccnd2, Fn1, Igfbp7, Pdgfa, and Timp1 was also affected by calcitriol treatment in Fgf23-expressing osteocytes, but not in those lacking Fgf23 expression, even after calcitriol administration. Furthermore, box-and-whisker plots indicated that Fgf23 expression was observed in osteocytes with higher expression levels of the Fam20c, Dmp1, and Phex genes, whose inactivating mutations have been shown to cause FGF23-related hypophosphatemic diseases. These results indicate that osteocytes are heterogeneous with respect to their responsiveness to 1,25-dihydroxyvitamin D3, and sensitivity to 1,25-dihydroxyvitamin D3 is one of the characteristics of osteocytes with Fgf23 expression. It is likely that there is a subpopulation of osteocytes expressing several genes, including Fgf23, involved in phosphate metabolism.

3.
J Biochem ; 159(2): 201-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26330566

ABSTRACT

Small GTPases play important roles in various aspects of cell division as well as membrane trafficking. We and others previously showed that ADP-ribosylation factor 6 (Arf6) is locally activated around the ingressing cleavage furrow and recruited to the Flemming body in late cytokinesis phases, and involved in faithful completion of cytokinesis. However, knockout of the Arf6 gene or Arf6 depletion by siRNAs did not drastically influence cytokinesis. We here show that, in addition to Arf6, Class I Arfs (Arf1 and Arf3) are localized to the Flemming body, and that double knockdown of Arf1 and Arf3 moderately increases the proportion of multinucleate cells and simultaneous knockdown of Arf1, Arf3 and Arf6 leads to severe cytokinesis defects. These observations indicate that Arf1 and Arf3 as well as Arf6 play important roles in cytokinesis. We further show that EFA6 (exchange factor for Arf6) activates not only Arf6 but also Arf1 in the cell. Taken together with our previous data, these Arf GTPases are likely to be locally activated by EFA6 and in turn targeted to the Flemming body to complete cytokinesis.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , ADP-Ribosylation Factors/metabolism , Cytokinesis , Nerve Tissue Proteins/metabolism , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Gene Knockdown Techniques , Gene Knockout Techniques , Golgi Apparatus , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , RNA, Small Interfering/genetics
4.
FEBS Lett ; 587(11): 1617-23, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23603394

ABSTRACT

The small GTPase Arf6 is transiently associated with the ingressing cleavage furrow and subsequently targeted to the Flemming body during cytokinesis, suggesting its activation around the cleavage furrow. Here, we show that EFA6 (exchange factor for Arf6) localizes on the cleavage furrow through its PH domain. Time-lapse analysis showed that both EFA6 and Arf6 are transiently localized around the ingressing cleavage furrow, but only Arf6 is subsequently targeted to the Flemming body. Expression of an EFA6 mutant suppresses Arf6 recruitment onto the Flemming body. These results suggest that EFA6 participates in activation of Arf6 around the cleavage furrow during cytokinesis.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cytokinesis , Nerve Tissue Proteins/metabolism , ADP-Ribosylation Factor 6 , Amino Acid Sequence , Amino Acid Substitution , Conserved Sequence , Enzyme Activation , Guanine Nucleotide Exchange Factors , HeLa Cells , Humans , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Protein Structure, Tertiary , Protein Transport , Single-Cell Analysis , Time-Lapse Imaging
5.
Cell Struct Funct ; 37(2): 141-54, 2012.
Article in English | MEDLINE | ID: mdl-22971977

ABSTRACT

Small GTPases ARF1 and ARF3 localize mainly to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We previously showed that BIG2, a guanine nucleotide exchange factor specific for ARF1 and ARF3, localizes not only to the trans-Golgi network (TGN) but also to recycling endosomes, where it is involved in regulating the integrity of recycling endosomes. However, it is not yet clear whether ARF1 and ARF3 act downstream of BIG2 to ensure endosome integrity. In this study, we show that EGFP-tagged ARF1 and ARF3 localize to endosomal compartments containing endocytosed transferrin. We further demonstrate that simultaneous depletion of ARF1 and ARF3 induces tubulation of recycling endosomal compartments positive for transferrin receptor, Rab4, and Rab11, but does not significantly affect the integrity of the Golgi apparatus or early or late endosomes. Moreover, the simultaneous depletion of ARF1 and ARF3 suppresses recycling of transferrin but does not affect either its endocytosis or the retrograde transport of TGN38 from early/recycling endosomes to the TGN. In addition, depletion of ARF1 and ARF3 does not affect retrograde transport of CD4-furin from late endosomes to the TGN, or of endocytosed EGF from late endosomes to lysosomes. These results indicate that ARF1 and ARF3 are redundantly required for the integrity of recycling endosomes, and that they regulate transferrin recycling from endosomes to the plasma membrane, but not retrograde transport from endosomal compartments to the TGN.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , ADP-Ribosylation Factors/metabolism , Endosomes/metabolism , ADP-Ribosylation Factor 1/deficiency , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factors/deficiency , ADP-Ribosylation Factors/genetics , Cell Membrane/metabolism , Gene Knockdown Techniques , Golgi Apparatus/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Microtubules/metabolism , Protein Transport , Receptors, Transferrin/metabolism , Transferrin/metabolism , rab GTP-Binding Proteins/metabolism , rab4 GTP-Binding Proteins/metabolism
6.
J Biol Chem ; 287(30): 25478-89, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22679020

ABSTRACT

Membrane-sculpting BAR (Bin/Amphiphysin/Rvs) domains form a crescent-shaped homodimer that can sense and induce membrane curvature through its positively charged concave face. We have recently shown that Arfaptin-2, which was originally identified as a binding partner for the Arf and Rac1 GTPases, binds to Arl1 through its BAR domain and is recruited onto Golgi membranes. There, Arfaptin-2 induces membrane tubules. Here, we report the crystal structure of the Arfaptin-2 BAR homodimer in complex with two Arl1 molecules bound symmetrically to each side, leaving the concave face open for membrane association. The overall structure of the Arl1·Arfaptin-2 BAR complex closely resembles that of the PX-BAR domain of sorting nexin 9, suggesting similar mechanisms underlying BAR domain targeting to specific organellar membranes. The Arl1·Arfaptin-2 BAR structure suggests that one of the two Arl1 molecules competes with Rac1, which binds to the concave face of the Arfaptin-2 BAR homodimer and may hinder its membrane association.


Subject(s)
ADP-Ribosylation Factors/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Membrane Proteins/chemistry , Protein Multimerization , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Crystallography, X-Ray , Golgi Apparatus/chemistry , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
7.
EMBO J ; 31(11): 2590-603, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22522702

ABSTRACT

A small GTPase, Arf6, is involved in cytokinesis by localizing to the Flemming body (the midbody). However, it remains unknown how Arf6 contributes to cytokinesis. Here, we demonstrate that Arf6 directly interacts with mitotic kinesin-like protein 1 (MKLP1), a Flemming body-localizing protein essential for cytokinesis. The crystal structure of the Arf6-MKLP1 complex reveals that MKLP1 forms a homodimer flanked by two Arf6 molecules, forming a 2:2 heterotetramer containing an extended ß-sheet composed of 22 ß-strands that spans the entire heterotetramer, suitable for interaction with a concave membrane surface at the cleavage furrow. We show that, during cytokinesis, Arf6 is first accumulated around the cleavage furrow and, prior to abscission, recruited onto the Flemming body via interaction with MKLP1. We also show by structure-based mutagenesis and siRNA-mediated knockdowns that the complex formation is required for completion of cytokinesis. A model based on these results suggests that the Arf6-MKLP1 complex plays a crucial role in cytokinesis by connecting the microtubule bundle and membranes at the cleavage plane.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cytokinesis , Microtubule-Associated Proteins/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/chemistry , ADP-Ribosylation Factors/genetics , Animals , Crystallography, X-Ray , HeLa Cells , Humans , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Mutation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...