Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 10(4): 220997, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37063996

ABSTRACT

It has long been discussed whether non-avian dinosaurs were physiologically closer to ectotherms or endotherms, with the internal nasal structure called the respiratory turbinate present in extant endotherms having been regarded as an important clue for this conundrum. However, the physiological function and relevance of this structure for dinosaur physiology are still controversial. Here, we found that the size of the nasal cavity relative to the head size of extant endotherms is larger than those of extant ectotherms, with that of the dromaeosaurid Velociraptor being below the extant endotherms level. The result suggests that a large nasal cavity accommodating a well-developed respiratory turbinate is primarily important as a thermoregulation apparatus for large brains characteristic of endothermic birds and mammals, and the nasal cavity of Velociraptor was apparently not large enough to carry out this role required for an endothermic-sized brain. In addition, a hypothesis that the enlargement of the nasal cavity for brain cooling has been associated with the skull modification in the theropod lineage toward modern birds is proposed herein. In particular, the reduction of the maxilla in derived avialans may have coincided with acquisition of the avian-like cephalic thermoregulation system.

2.
Anat Rec (Hoboken) ; 302(7): 1210-1225, 2019 07.
Article in English | MEDLINE | ID: mdl-30378771

ABSTRACT

Teeth are continually replaced in most of non-mammalian gnathostomes to maintain their functional dentitions. To clarify the tooth replacement patterns in tyrannosaurid theropod dinosaurs, we examined well-preserved dentitions (both premaxillae, left maxilla, partial right maxilla, and both dentaries) of a juvenile Tarbosaurus bataar (MPC-D 107/7) using X-ray computed tomographic (CT) imaging. Three-dimensional (3D) rendering of the dentitions and staging of replacement teeth allowed quantitative analyses of the tooth ontogeny and replacement patterns in this specimen. These strategies were validated by comparing the results between MPC-D 107/7 and extant crocodilians, which are taxa that have previously been studied using non-CT methods. 3D-rendered dentitions of MPC-D 107/7 showed alternate replacement patterns between odd- and even-numbered alveoli. Such patterns were discontinuous at the premaxilla-maxilla junctions, suggesting the division of replacement patterns between the two dentitions possessing morpho-functionally different features. The replacement process in the odd-numbered alveoli of the left maxilla sequentially proceeded from distal alveoli. Meanwhile, in the both dentaries, there were simple alternate patterns in which functional teeth would be simultaneously shed out in every second alveoli. Such a simple alternation had never been reported in the adult tyrannosaurid dentaries. Under this pattern, the half of functional teeth in a single dentition would be shed at the same time, which may hamper foraging functions. We conclude that the simple alternate patterns found in the dentary dentitions of MPC-D 107/7 represent transient condition in juvenile tyrannosaurids, suggesting ontogenetic changes in tooth replacement patterns in the tyrannosaurid dentary. Anat Rec, 302:1210-1225, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Dinosaurs/growth & development , Odontogenesis , Tooth/growth & development , Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/growth & development , Anatomy, Comparative , Animals , Dinosaurs/anatomy & histology , Fossils/diagnostic imaging , Imaging, Three-Dimensional , Tomography, X-Ray Computed , Tooth/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...