Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(17): 171103, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412268

ABSTRACT

With the first detection of gravitational waves from a binary system of neutron stars GW170817, a new window was opened to study the properties of matter at and above nuclear-saturation density. Reaching densities a few times that of nuclear matter and temperatures up to 100 MeV, such mergers also represent potential sites for a phase transition (PT) from confined hadronic matter to deconfined quark matter. While the lack of a postmerger signal in GW170817 has prevented us from assessing experimentally this scenario, two theoretical studies have explored the postmerger gravitational-wave signatures of PTs in mergers of a binary system of neutron stars. We here extend and complete the picture by presenting a novel signature of the occurrence of a PT. More specifically, using fully general-relativistic hydrodynamic simulations and employing a suitably constructed equation of state that includes a PT, we present the occurrence of a "delayed PT," i.e., a PT that develops only some time after the merger and produces a metastable object with a quark-matter core, i.e., a hypermassive hybrid star. Because in this scenario, the postmerger signal exhibits two distinct fundamental gravitational-wave frequencies-before and after the PT-the associated signature promises to be the strongest and cleanest among those considered so far, and one of the best signatures of the production of quark matter in the present Universe.

2.
Phys Rev Lett ; 122(6): 061101, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822043

ABSTRACT

Merging binaries of neutron-stars are not only strong sources of gravitational waves, but also have the potential of revealing states of matter at densities and temperatures not accessible in laboratories. A crucial and long-standing question in this context is whether quarks are deconfined as a result of the dramatic increase in density and temperature following the merger. We present the first fully general-relativistic simulations of merging neutron-stars including quarks at finite temperatures that can be switched off consistently in the equation of state. Within our approach, we can determine clearly what signatures a quark-hadron phase transition would leave in the gravitational-wave signal. We show that if after the merger the conditions are met for a phase transition to take place at several times nuclear saturation density, they would lead to a postmerger signal considerably different from the one expected from the inspiral, that can only probe the hadronic part of the equations of state, and to an anticipated collapse of the merged object. We also show that the phase transition leads to a very hot and dense quark core that, when it collapses to a black hole, produces a ringdown signal different from the hadronic one. Finally, in analogy with what is done in heavy-ion collisions, we use the evolution of the temperature and density in the merger remnant to illustrate the properties of the phase transition in a QCD phase diagram.

3.
Phys Rev Lett ; 120(4): 041101, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29437407

ABSTRACT

Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

4.
Phys Rev Lett ; 89(17): 171101, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12398654

ABSTRACT

Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated. We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R approximately equal 8 km.

SELECTION OF CITATIONS
SEARCH DETAIL
...