Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(24): 43491-43502, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523045

ABSTRACT

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.

2.
Opt Express ; 22(18): 21145-56, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321495

ABSTRACT

The surface shape and optical thickness variation of a lithium niobate (LNB) wafer were measured simultaneously using a wavelength-tuning interferometer with a new phase-shifting algorithm. It is necessary to suppress the harmonic signals for testing a highly reflective sample such as a crystal wafer. The LNB wafer subjected to polishing, which is in optical contact with a fused-silica (FS) supporting plate, generates six different overlapping interference fringes. The reflectivity of the wafer is typically 15%, yielding significant harmonic signals. The new algorithm can flexibly select the phase-shift interval and effectively suppress the harmonic signals and crosstalk. Experimental results indicated that the optical thickness variation of the LNB wafer was measured with an accuracy of 2 nm.

3.
Sci Rep ; 3: 2561, 2013.
Article in English | MEDLINE | ID: mdl-24008696

ABSTRACT

Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 10(18) W/cm(2), respectively. The irradiated pellets produce D(d,n)(3)He-reacted neutrons with a maximum yield of 9.5 × 10(4)/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 µm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy.


Subject(s)
Lasers , Neutrons , Nuclear Fusion , Polystyrenes/radiation effects
4.
Opt Express ; 12(23): 5579-94, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-19488192

ABSTRACT

The interferometric surface measurement of single or stacked parallel plates presents considerable technical difficulties due to multiple-beam interference. To apply phase-shifting methods, it is necessary to use a pathlength-dependent technique such as wavelength scanning, which separates interference signals from various surfaces in frequency space. The detection window for frequency analysis has to be optimized for maximum tolerance against frequency detuning due to material dispersion and scanning nonlinearities, as well as for suppression of noise from other frequencies. We introduce a new class of phase-shifting algorithms that fulfill these requirements and allow continuous tuning of phase detection to any frequency of interest. We show results for a four-surface stack of nearparallel plates, measured in a Fizeau interferometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...