Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioanalysis ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722106

ABSTRACT

As part of the European Bioanalysis Forum's continued commitment to develop young scientists beyond their scientific skills, we also focus on soft skills and a community responsibility during the Young Scientist Symposia, with the Science Café. In previous years, we have focused on topics such as sustainability (green lab) or the impact of the COVID-19 pandemic on career development. At the ninth Young Scientist Symposium, the Science Café roundtables focused on the work-life balance and how caring for it can be beneficial for both the individual and the company. Feedback from a premeeting survey and from the discussions during the roundtables can be an important addition to personal and professional development. If organizations are not already focusing on the importance of a healthy work-life balance, they can be inspired to include some aspects of the outcome of the Science Café discussions when developing their staff toward future (scientific) leadership.

2.
Sens Diagn ; 2(6): 1492-1500, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38013761

ABSTRACT

Therapeutic drug monitoring (TDM) of tumor necrosis factor-α (TNFα)-inhibitors adalimumab and infliximab is important to establish optimal drug dose and maximize treatment efficacy. Currently, TDM is primarily performed with ELISA techniques in clinical laboratories, resulting in a long sample-to-result workflow. Point-of-care (POC) detection of these therapeutic antibodies could significantly decrease turnaround times and allow for user-friendly home-testing. Here, we adapted the recently developed bioluminescent dRAPPID (dimeric Ratiometric Plug-and-Play Immunodiagnostics) sensor platform to allow POC TDM of infliximab and adalimumab. We applied the two best performing dRAPPID sensors, with limit-of-detections of 1 pM and 17 pM, to measure the infliximab and adalimumab levels in 49 and 40 patient serum samples, respectively. The analytical performance of dRAPPID was benchmarked with commercial ELISAs and yielded Pearson's correlation coefficients of 0.93 and 0.94 for infliximab and adalimumab, respectively. Furthermore, a dedicated bioluminescence reader was fabricated and used as a readout device for the TDM dRAPPID sensors. Subsequently, infliximab and adalimumab patient serum samples were measured with the TDM dRAPPID sensors and bioluminescence reader, yielding Pearson's correlation coefficients of 0.97 and 0.86 for infliximab and adalimumab, respectively, and small proportional differences with ELISA (slope was 0.97 ± 0.09 and 0.96 ± 0.20, respectively). The adalimumab and infliximab dRAPPID sensors, in combination with the dedicated bioluminescence reader, allow for ease-of-use TDM with a fast turnaround time and show potential for POC TDM outside of clinical laboratories.

3.
ACS Cent Sci ; 9(4): 657-667, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122471

ABSTRACT

Nucleic acid detection methods based on CRISPR and isothermal amplification techniques show great potential for point-of-care diagnostic applications. However, most current methods rely on fluorescent or lateral flow assay readout, requiring external excitation or postamplification reaction transfer. Here, we developed a bioluminescent nucleic acid sensor (LUNAS) platform in which target dsDNA is sequence-specifically detected by a pair of dCas9-based probes mediating split NanoLuc luciferase complementation. LUNAS is easily integrated with recombinase polymerase amplification (RPA), providing attomolar sensitivity in a rapid one-pot assay. A calibrator luciferase is included for a robust ratiometric readout, enabling real-time monitoring of the RPA reaction using a simple digital camera. We designed an RT-RPA-LUNAS assay that allows SARS-CoV-2 RNA detection without the need for cumbersome RNA isolation and demonstrated its diagnostic performance for COVID-19 patient nasopharyngeal swab samples. Detection of SARS-CoV-2 from samples with viral RNA loads of ∼200 cp/µL was achieved within ∼20 min, showing that RPA-LUNAS is attractive for point-of-care infectious disease testing.

4.
Nat Commun ; 12(1): 4586, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321486

ABSTRACT

Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a mix-and-measure homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. Introduction of a calibrator luciferase provides a robust ratiometric signal that allows direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. With its easy-to-implement standardized workflow, RAPPID provides an attractive, fast, and low-cost alternative to traditional immunoassays, in an academic setting, in clinical laboratories, and for point-of-care applications.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/standards , Luminescent Measurements/standards , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/instrumentation , Calibration , GTP-Binding Proteins/chemistry , Genes, Reporter , Humans , Immunoconjugates/chemistry , Limit of Detection , Luciferases/genetics , Luciferases/metabolism , Point-of-Care Testing , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...