Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965649

ABSTRACT

Inflammasomes are multiprotein complexes that form in response to ligands originating from pathogens as well as alterations of normal cell physiology caused by infection or tissue damage. These structures engage a robust inflammatory immune response that eradicates environmental microbes before they cause disease, and slow the growth of bona fide pathogens. Despite their undeniable utility in immunity, inflammasomes are radically reduced in birds. Perhaps most surprising is that, within all birds, NLRP3 is retained, while its signaling adapter ASC is lost, suggesting that NLRP3 signals via a novel unknown adapter. Crocodilian reptiles and turtles, which share a more recent common ancestor with birds, retain many of the lost inflammasome components, indicating that the deletion of inflammasomes occurred after birds diverged from crocodiles. Some bird lineages have even more extensive inflammasome loss, with songbirds continuing to pare down their inflammasomes until only NLRP3 and CARD8 remain. Remarkably, songbirds have lost caspase-1 but retain the downstream targets of caspase-1: IL-1ß, IL-18, and the YVAD-linker encoding gasdermin A. This suggests that inflammasomes can signal through alternative proteases to activate cytokine maturation and pyroptosis in songbirds. These observations may reveal new contexts of activation that may be relevant to mammalian inflammasomes, and may suggest new avenues of research to uncover the enigmatic nature of the poorly understood NLRP3 inflammasome.

2.
Nat Microbiol ; 9(4): 988-1006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538832

ABSTRACT

The human facilitates chromatin transcription (FACT) complex is a chromatin remodeller composed of human suppressor of Ty 16 homologue (hSpt16) and structure-specific recognition protein-1 subunits that regulates cellular gene expression. Whether FACT regulates host responses to infection remained unclear. We identify a FACT-mediated, interferon-independent, antiviral pathway that restricts poxvirus replication. Cell culture and bioinformatics approaches suggest that early viral gene expression triggers nuclear accumulation of SUMOylated hSpt16 subunits required for the expression of E26 transformation-specific sequence-1 (ETS-1)-a transcription factor that activates virus restriction programs. However, biochemical studies show that poxvirus-encoded A51R proteins block ETS-1 expression by outcompeting structure-specific recognition protein-1 binding to SUMOylated hSpt16 and by tethering SUMOylated hSpt16 to microtubules. Furthermore, A51R antagonism of FACT enhances poxvirus replication in human cells and virulence in mice. Finally, we show that FACT also restricts rhabdoviruses, flaviviruses and orthomyxoviruses, suggesting broad roles for FACT in antiviral immunity. Our study reveals the FACT-ETS-1 antiviral response (FEAR) pathway to be critical for eukaryotic antiviral immunity and describes a unique mechanism of viral immune evasion.


Subject(s)
Immune Evasion , Interferons , Humans , Animals , Mice , Chromatin
3.
FEMS Microbiol Rev ; 47(5)2023 09 05.
Article in English | MEDLINE | ID: mdl-37740576

ABSTRACT

The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.


Subject(s)
Giant Viruses , Viruses , Giant Viruses/genetics , Giant Viruses/metabolism , Phylogeny , Genome, Viral/genetics , Biological Evolution , Viruses/genetics
4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993770

ABSTRACT

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but a mechanism of norovirus-infection triggered cell death and lysis are unknown. Here we have identified a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase contains a N-terminal four helix bundle domain homologous to the pore forming domain of the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL). Norovirus NTPase acquired a mitochondrial localization signal, thereby inducing cell death by targeting mitochondria. NTPase full length (NTPase-FL) and N-terminal fragment (NTPase-NT) bound mitochondrial membrane lipid cardiolipin, permeabilized mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NTPase were essential for cell death, virus egress from cells and virus replication in mice. These findings suggest that noroviruses stole a MLKL-like pore forming domain and co-opted it to facilitate viral egress by inducing mitochondrial dysfunction.

5.
Nature ; 616(7955): 152-158, 2023 04.
Article in English | MEDLINE | ID: mdl-36991121

ABSTRACT

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.


Subject(s)
Cell Death , Norovirus , Nucleoside-Triphosphatase , Protein Kinases , Viral Proteins , Animals , Mice , Mitochondria/metabolism , Mitochondria/pathology , Norovirus/enzymology , Norovirus/growth & development , Norovirus/pathogenicity , Norovirus/physiology , Protein Kinases/chemistry , Virus Replication , Viral Proteins/chemistry , Viral Proteins/metabolism , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Protein Sorting Signals , Cardiolipins/metabolism , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism
6.
Sci Immunol ; 8(79): eabp9765, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662885

ABSTRACT

The mechanisms by which innate immune receptors mediate self-nonself discrimination are unclear. In this study, we found species-specific molecular determinants of self-DNA reactivity by cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase (cGAS). Human cGAS contained a catalytic domain that was intrinsically self-DNA reactive and stimulated interferon responses in diverse cell types. This reactivity was prevented by an upstream amino (N)-terminal domain. The cGAS proteins from several nonhuman primate species exhibited a similar pattern of self-DNA reactivity in cells, but chimpanzee cGAS was inactive even when its amino-terminal domain was deleted. In contrast, the N terminus of mouse cGAS promoted self-DNA reactivity. When expressed within tumors, only self-DNA-reactive cGAS proteins protected mice from tumor-induced lethality. In vitro studies of DNA- or chromatin-induced cGAS activation did not reveal species-specific activities that correlate with self-DNA reactivity observed in macrophages. Cell biological analysis revealed that self-DNA reactivity by human cGAS, but not mouse cGAS, correlated with localization to mitochondria. We found that epitope tag positions affected self-DNA reactivity in cells and that DNA present in cell lysates undermines the reliability of cGAS biochemical fractionations. These studies reveal species-specific diversity of cGAS functions, even within the primate lineage, and highlight experimental considerations for the study of this innate immune receptor.


Subject(s)
DNA , Nucleotides, Cyclic , Animals , Mice , Humans , Reproducibility of Results , DNA/chemistry , DNA/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Mammals/metabolism
7.
mBio ; 13(1): e0209621, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073751

ABSTRACT

Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.


Subject(s)
Interferon Type I , Virus Diseases , Humans , Adaptor Proteins, Signal Transducing/metabolism , Mitochondria/metabolism , Signal Transduction , Interferon Type I/metabolism , Antiviral Agents , Immunity, Innate
8.
Mol Biol Evol ; 38(12): 5405-5422, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34436583

ABSTRACT

Pathogen infection triggers host innate defenses which may result in the activation of regulated cell death (RCD) pathways such as apoptosis. Given a vital role in immunity, apoptotic effectors are often counteracted by pathogen-encoded antagonists. Mounting evidence indicates that programmed necrosis, which is mediated by the RIPK3/MLKL axis and termed necroptosis, evolved as a countermeasure to pathogen-mediated inhibition of apoptosis. Yet, it is unclear whether components of this emerging RCD pathway display signatures associated with pathogen conflict that are rare in combination but common to key host defense factors, namely, rapid evolution, viral homolog (virolog), and cytokine induction. We leveraged evolutionary sequence analysis that examines rates of amino acid replacement, which revealed: 1) strong and recurrent signatures of positive selection for primate and bat RIPK3 and MLKL, and 2) elevated rates of amino acid substitution on multiple RIPK3/MLKL surfaces suggestive of past antagonism with multiple, distinct pathogen-encoded inhibitors. Furthermore, our phylogenomics analysis across poxvirus genomes illuminated volatile patterns of evolution for a recently described MLKL viral homolog. Specifically, poxviral MLKLs have undergone numerous gene replacements mediated by duplication and deletion events. In addition, MLKL protein expression is stimulated by interferons in human and mouse cells. Thus, MLKL displays all three hallmarks of pivotal immune factors of which only a handful of factors like OAS1 exhibit. These data support the hypothesis that over evolutionary time MLKL functions-which may include execution of necroptosis-have served as a major determinant of infection outcomes despite gene loss in some host genomes.


Subject(s)
Necroptosis , Protein Kinases , Amino Acid Substitution , Animals , Apoptosis , Mice , Necroptosis/genetics , Necrosis/genetics , Protein Kinases/genetics , Protein Kinases/metabolism
9.
PLoS Biol ; 18(12): e3001045, 2020 12.
Article in English | MEDLINE | ID: mdl-33370271

ABSTRACT

Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these "molecular scars" as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.


Subject(s)
Host-Pathogen Interactions/genetics , Mitochondria/genetics , Stress, Physiological/genetics , Animals , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Evolution, Molecular , Gene Regulatory Networks/genetics , Host-Pathogen Interactions/physiology , Humans , MicroRNAs/genetics , Mitochondria/metabolism , Phylogeny , Stress, Physiological/physiology , Viruses/genetics
10.
Hum Mutat ; 40(8): 1057-1062, 2019 08.
Article in English | MEDLINE | ID: mdl-31033088

ABSTRACT

Moebius syndrome (MBS) is a congenital disorder caused by paralysis of the facial and abducens nerves. Although a number of candidate genes have been suspected, so far only mutations in PLXND1 and REV3L are confirmed to cause MBS. Here, we fine mapped the breakpoints of a complex chromosomal rearrangement (CCR) 46,XY,t(7;8;11;13) in a patient with MBS, which revealed 41 clustered breakpoints with typical hallmarks of chromothripsis. Among 12 truncated protein-coding genes, SEMA3A is known to bind to the MBS-associated PLXND1. Intriguingly, the CCR also truncated PIK3CG, which in silico interacts with REVL3 encoded by the other known MBS-gene REV3L, and with the SEMA3A/PLXND1 complex via FLT1. Additional studies of other complex rearrangements may reveal whether the multiple breakpoints in germline chromothripsis may predispose to complex multigenic disorders.


Subject(s)
Chromothripsis , Germ-Line Mutation , Membrane Glycoproteins/genetics , Mobius Syndrome/genetics , Semaphorins/genetics , Chromosome Breakpoints , Fatal Outcome , Gene Rearrangement , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Semaphorin-3A/genetics
11.
Methods Mol Biol ; 1769: 169-181, 2018.
Article in English | MEDLINE | ID: mdl-29564824

ABSTRACT

Chromothripsis is a mutational event driven by tens to hundreds of double-stranded DNA breaks which occur in a single event between a limited number of chromosomes. Following chromosomal shattering, DNA fragments are stitched together in a seemingly random manner resulting in complex genomic rearrangements including sequence shuffling, deletions, and inversions of varying size. This genomic catastrophe has been observed in cancer genomes and the genomes of patients harboring developmental and congenital defects. The mechanisms catalyzing DNA breakage and coordinating the "random" assembly of genomic fragments are actively being investigated. Recently, retrotransposons-a type of "jumping gene"-have been implicated as one means to generate double-stranded DNA breaks during chromothripsis and as sequences which can contribute to the final configuration of the derived chromosomes. In this methods chapter, I discuss how to apply available bioinformatic tools and the hallmarks of retrotransposon mobilization to breakpoint junctions to assess the role for active and inactive retrotransposon sequences in chromothriptic events.


Subject(s)
Chromothripsis , Retroelements , Alu Elements , Genome, Human , Homologous Recombination , Humans , Long Interspersed Nucleotide Elements , Mutagenesis, Insertional , Sequence Deletion , Sequence Inversion
12.
Mob DNA ; 8: 17, 2017.
Article in English | MEDLINE | ID: mdl-29201157

ABSTRACT

BACKGROUND: Recent reports indicate that retrotransposons - a type of mobile DNA - can contribute to neuronal genetic diversity in mammals. Retrotransposons are genetic elements that mobilize via an RNA intermediate by a "copy-and-paste" mechanism termed retrotransposition. Long Interspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in humans and its activity is responsible for ~ 30% of genomic mass. Historically, L1 retrotransposition was thought to be restricted to the germline; however, new data indicate L1 s are active in somatic tissue with certain regions of the brain being highly permissive. The functional implications of L1 insertional activity in the brain and how host cells regulate it are incomplete. While deep sequencing and qPCR analysis have shown that L1 copy number is much higher in certain parts of the human brain, direct in vivo studies regarding detection of L1-encoded proteins is lacking due to ineffective reagents. RESULTS: Using a polyclonal antibody we generated against the RNA-binding (RRM) domain of L1 ORF1p, we observe widespread ORF1p expression in post-mortem human brain samples including the hippocampus which has known elevated rates of retrotransposition. In addition, we find that two brains from different individuals of different ages display very different expression of ORF1p, especially in the frontal cortex. CONCLUSIONS: We hypothesize that discordance of ORF1p expression in parts of the brain reported to display elevated levels of retrotransposition may suggest the existence of factors mediating post-translational regulation of L1 activity in the human brain. Furthermore, this antibody reagent will be useful as a complementary means to confirm findings related to retrotransposon biology and activity in the brain and other tissues in vivo.

13.
Mob DNA ; 7: 9, 2016.
Article in English | MEDLINE | ID: mdl-27158268

ABSTRACT

Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.

14.
Hum Mutat ; 37(4): 385-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26929209

ABSTRACT

Chromothripsis (CTH) is a phenomenon where multiple localized double-stranded DNA breaks result in complex genomic rearrangements. Although the DNA-repair mechanisms involved in CTH have been described, the mechanisms driving the localized "shattering" process remain unclear. High-throughput sequence analysis of a familial germline CTH revealed an inserted SVAE retrotransposon associated with a 110-kb deletion displaying hallmarks of L1-mediated retrotransposition. Our analysis suggests that the SVAE insertion did not occur prior to or after, but concurrent with the CTH event. We also observed L1-endonuclease potential target sites in other breakpoints. In addition, we found four Alu elements flanking the 110-kb deletion and associated with an inversion. We suggest that chromatin looping mediated by homologous Alu elements may have brought distal DNA regions into close proximity facilitating DNA cleavage by catalytically active L1-endonuclease. Our data provide the first evidence that active and inactive human retrotransposons can serve as endogenous mutagens driving CTH in the germline.


Subject(s)
Alu Elements , Chromothripsis , Germ-Line Mutation , Homologous Recombination , Long Interspersed Nucleotide Elements , Base Sequence , Chromosome Breakpoints , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 5 , Humans , Minisatellite Repeats , Mutagenesis, Insertional , Retroelements , Sequence Deletion
15.
PLoS Genet ; 11(5): e1005203, 2015 May.
Article in English | MEDLINE | ID: mdl-25942676

ABSTRACT

A diverse subset of pattern recognition receptors (PRRs) detects pathogen-associated nucleic acids to initiate crucial innate immune responses in host organisms. Reflecting their importance for host defense, pathogens encode various countermeasures to evade or inhibit these immune effectors. PRRs directly engaged by pathogen inhibitors often evolve under recurrent bouts of positive selection that have been described as molecular 'arms races.' Cyclic GMP-AMP synthase (cGAS) was recently identified as a key PRR. Upon binding cytoplasmic double-stranded DNA (dsDNA) from various viruses, cGAS generates the small nucleotide secondary messenger cGAMP to signal activation of innate defenses. Here we report an evolutionary history of cGAS with recurrent positive selection in the primate lineage. Recent studies indicate a high degree of structural similarity between cGAS and 2'-5'-oligoadenylate synthase 1 (OAS1), a PRR that detects double-stranded RNA (dsRNA), despite low sequence identity between the respective genes. We present comprehensive comparative evolutionary analysis of cGAS and OAS1 primate sequences and observe positive selection at nucleic acid binding interfaces and distributed throughout both genes. Our data revealed homologous regions with strong signatures of positive selection, suggesting common mechanisms employed by unknown pathogen encoded inhibitors and similar modes of evasion from antagonism. Our analysis of cGAS diversification also identified alternately spliced forms missing multiple sites under positive selection. Further analysis of selection on the OAS family in primates, which comprises OAS1, OAS2, OAS3 and OASL, suggests a hypothesis where gene duplications and domain fusion events result in paralogs that provide another means of escaping pathogen inhibitors. Together our comparative evolutionary analysis of cGAS and OAS provides new insights into distinct mechanisms by which key molecular sentinels of the innate immune system have adapted to circumvent viral-encoded inhibitors.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Evolution, Molecular , Nucleic Acids/genetics , Nucleotides, Cyclic/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Immunity/genetics , Models, Genetic , Molecular Sequence Data , Primates/genetics , Primates/immunology , Protein Conformation , RNA, Double-Stranded/genetics , Sequence Analysis, DNA
16.
Proc Natl Acad Sci U S A ; 112(14): E1773-81, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25831530

ABSTRACT

Interferon γ-inducible protein 16 (IFI16) and cGMP-AMP synthase (cGAS) have both been proposed to detect herpesviral DNA directly in herpes simplex virus (HSV)-infected cells and initiate interferon regulatory factor-3 signaling, but it has been unclear how two DNA sensors could both be required for this response. We therefore investigated their relative roles in human foreskin fibroblasts (HFFs) infected with HSV or transfected with plasmid DNA. siRNA depletion studies showed that both are required for the production of IFN in infected HFFs. We found that cGAS shows low production of cGMP-AMP in infected cells, but instead cGAS is partially nuclear in normal human fibroblasts and keratinocytes, interacts with IFI16 in fibroblasts, and promotes the stability of IFI16. IFI16 is associated with viral DNA and targets to viral genome complexes, consistent with it interacting directly with viral DNA. Our results demonstrate that IFI16 and cGAS cooperate in a novel way to sense nuclear herpesviral DNA and initiate innate signaling.


Subject(s)
Fibroblasts/metabolism , Herpes Simplex/metabolism , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , Phosphoproteins/metabolism , Simplexvirus/metabolism , Animals , Cytoplasm/metabolism , DNA/chemistry , Gene Expression Regulation , HEK293 Cells , Herpes Simplex/virology , Humans , Keratinocytes/metabolism , Mice , RNA, Small Interfering/metabolism , Signal Transduction , Transcription, Genetic
17.
Hum Mol Genet ; 22(18): 3730-48, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23696454

ABSTRACT

Long INterspersed Elements (LINE-1s, L1s) are responsible for over one million retrotransposon insertions and 8000 processed pseudogenes (PPs) in the human genome. An active L1 encodes two proteins (ORF1p and ORF2p) that bind with L1 RNA and form L1-ribonucleoprotein particles (RNPs). Although it is believed that the RNA-binding property of ORF1p is critical to recruit other mobile RNAs to the RNP, the identity of recruited RNAs is largely unknown. Here, we used crosslinking and immunoprecipitation followed by deep sequencing to identify RNA components of L1-RNPs. Our results show that in addition to retrotransposed RNAs [L1, Alu and SINE-VNTR-Alu (SVA)], L1-RNPs are enriched with cellular mRNAs, which have PPs in the human genome. Using purified L1-RNPs, we show that PP-source RNAs preferentially serve as ORF2p templates in a reverse transcriptase assay. In addition, we find that exogenous ORF2p binds endogenous ORF1p, allowing reverse transcription of the same PP-source RNAs. These data demonstrate that interaction of a cellular RNA with the L1-RNP is an inside track to PP formation.


Subject(s)
Long Interspersed Nucleotide Elements/genetics , Open Reading Frames , Pseudogenes , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Ribonucleoproteins/metabolism , Gene Expression , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , RNA/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Retroelements , Ribonucleoproteins/genetics
18.
Mol Cell Biol ; 32(22): 4718-26, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23007156

ABSTRACT

RNA-based duplication mediated by reverse transcriptase (RT), a process termed retrotransposition, is ongoing in humans and is a source of significant inter- and perhaps intraindividual genomic variation. The long interspersed element 1 (LINE-1 or L1) ORF2 protein is the genomic source for RT activity required for mobilization of its own RNA in cis and other RNAs, such as SINE/variable-number tandem-repeat (VNTR)/Alu (SVA) elements, in trans. SVA elements are ~2-kb hominid-specific noncoding RNAs that have resulted in single-gene disease in humans through insertional mutagenesis or aberrant mRNA splicing. Here, using an SVA retrotransposition cell culture assay in U2OS cells, we investigated SVA domains important in L1-mediated SVA retrotransposition. Partial- and whole-domain deletions revealed that removal of either the Alu-like or SINE-R domain in the context of a full-length SVA has little to no effect, whereas removal of the CT hexamer or the VNTR domain can result in a 75% decrease in activity. Additional experiments demonstrate that the Alu-like fragment alone can retrotranspose at low levels while the addition of the CT hexamer can enhance activity as much as 2-fold compared to that of the full-length SVA. These results suggest that no SVA domain is essential for retrotransposition in U2OS cells and that the 5' end of SVA (hexamer and Alu-like domain) is sufficient for retrotransposition.


Subject(s)
Alu Elements , Long Interspersed Nucleotide Elements , RNA, Untranslated/genetics , Reverse Transcription , Cell Line, Tumor , Genes, Reporter , Green Fluorescent Proteins , Humans , Minisatellite Repeats , Mutagenesis, Insertional , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
19.
Curr Opin Genet Dev ; 22(3): 191-203, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22406018

ABSTRACT

Mobile DNAs, also known as transposons or 'jumping genes', are widespread in nature and comprise an estimated 45% of the human genome. Transposons are divided into two general classes based on their transposition intermediate (DNA or RNA). Only one subclass, the non-LTR retrotransposons, which includes the Long INterspersed Element-1 (LINE-1 or L1), is currently active in humans as indicated by 96 disease-causing insertions. The autonomous LINE-1 is capable of retrotransposing not only a copy of its own RNA in cis but also other RNAs (Alu, SINE-VNTR-Alu (SVA), U6) in trans to new genomic locations through an element encoded reverse transcriptase. L1 can also retrotranspose cellular mRNAs, resulting in processed pseudogene formation. Here, we highlight recent reports that update our understanding of human L1 retrotransposition and their role in disease. Finally we discuss studies that provide insights into the past and current activity of these retrotransposons, and shed light on not just when, but where, retrotransposition occurs and its part in genetic variation.


Subject(s)
DNA Transposable Elements , Genetic Diseases, Inborn/genetics , Genome, Human , RNA/metabolism , Alu Elements , DNA Methylation , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/metabolism , Genetic Variation , Humans , Long Interspersed Nucleotide Elements , Open Reading Frames , Promoter Regions, Genetic , Pseudogenes , RNA/genetics , Time Factors , Transcription, Genetic , Untranslated Regions
20.
Hum Mutat ; 33(2): 369-71, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22095564

ABSTRACT

Long INterspersed Element-1 (LINE-1) retrotransposons comprise 17% of the human genome, and move by a potentially mutagenic "copy and paste" mechanism via an RNA intermediate. Recently, the retrotransposition-mediated insertion of a new transcript was described as a novel cause of genetic disease, Duchenne muscular dystrophy, in a Japanese male. The inserted sequence was presumed to derive from a single-copy, noncoding RNA transcribed from chromosome 11q22.3 that retrotransposed into the dystrophin gene. Here, we demonstrate that a nonreference full-length LINE-1 is situated in the proband and maternal genome at chromosome 11q22.3, directly upstream of the sequence, whose copy was inserted into the dystrophin gene. This LINE-1 is highly active in a cell culture assay. LINE-1 insertions are often associated with 3' transduction of adjacent genomic sequences. Thus, the likely explanation for the mutagenic insertion is a LINE-1-mediated 3' transduction with severe 5' truncation. This is the first example of LINE-1-induced human disease caused by an "orphan" 3' transduction.


Subject(s)
Long Interspersed Nucleotide Elements/genetics , Mutagenesis, Insertional , Chromosomes, Human, Pair 11 , Dystrophin/genetics , Gene Order , Humans , Male , Muscular Dystrophy, Duchenne/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...