Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 389(1): 179-96, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17619180

ABSTRACT

A suite of three ginkgo-containing dietary supplement Standard Reference Materials (SRMs) has been issued by the National Institute of Standards and Technology (NIST) with certified values for flavonoid aglycones, ginkgolides, bilobalide, and selected toxic trace elements. The materials represent a range of matrices (i.e., plant, extract, and finished product) that provide different analytical challenges. The constituents have been determined by at least two independent analytical methods with measurements performed by NIST and at least one collaborating laboratory. The methods utilized different extractions, chromatographic separations, modes of detection, and approaches to quantitation. The SRMs are primarily intended for method validation and for use as control materials to support the analysis of dietary supplements and related botanical materials.


Subject(s)
Dietary Supplements/analysis , Dietary Supplements/standards , Ginkgo biloba/chemistry , Arsenic/analysis , Arsenic/toxicity , Chromatography, Liquid , Flavonoids/chemistry , Ginkgolides/chemistry , Lactones/chemistry , Metals, Heavy/analysis , Metals, Heavy/toxicity , Molecular Structure , Reference Standards , Spectrometry, Mass, Electrospray Ionization , Terpenes/chemistry
2.
J Res Natl Inst Stand Technol ; 111(4): 313-24, 2006.
Article in English | MEDLINE | ID: mdl-27274935

ABSTRACT

Ricin is an abundant protein from the castor bean plant Ricinus communis. Because of its high toxicity and the simplicity of producing mass quantities, ricin is considered a biological terrorism agent. We have characterized ricin extensively with a view to develop Reference Materials that could be used to test and calibrate detection devices. The characterization of ricin includes: 1) purity test of a commercial batch of ricin using electrophoresis in polyacrylamide gels, 2) biological activity assay by measuring its ability to inhibit protein synthesis, 3) quantitation of protein concentration by amino acid analysis, 4) detection of ricin by an immunoassay using a flow cytometer, and 5) detection of ricin genomic DNA by polymerase chain reaction using nine different primer sets. By implementing these five methods of characterization, we are in a position to develop a reference material for ricin.

3.
Genomics ; 86(4): 446-61, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16024219

ABSTRACT

Human mitochondrial DNA (mtDNA) mutations are important for forensic identifications and mitochondrial disease diagnostics. Low-frequency mutations, heteroplasmies, or SNPs scattered throughout the DNA in the presence of a majority of mtDNA with the Cambridge Reference Sequence (CRS) are almost impossible to detect. Therefore, the National Institute of Science and Technology has developed heteroplasmic human mtDNA Standard Reference Material (SRM) 2394 to allow scientists to determine their sensitivity in detecting such differences. SRM 2394 is composed of mixtures ranging from 1/99 to 50/50 of two 285-bp PCR products from two cell lines that differ at one nucleotide position. Twelve laboratories using various mutation detection methods participated in a blind interlaboratory evaluation of a prototype of SRM 2394. Most of these procedures were unable to detect the mutation when present below 20%, an indication that, in many real-life cases, low-frequency mutations remain undetected and that more sensitive mutation detection techniques are urgently needed.


Subject(s)
DNA, Mitochondrial/analysis , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Reference Standards , Sensitivity and Specificity , Cells, Cultured , DNA Primers , DNA, Mitochondrial/genetics , Electrophoresis, Polyacrylamide Gel , Humans , Nucleic Acid Heteroduplexes , Peptide Nucleic Acids/analysis , Polymerase Chain Reaction/methods , Sequence Analysis, DNA
4.
Mitochondrion ; 2(6): 387-400, 2003 Jun.
Article in English | MEDLINE | ID: mdl-16120335

ABSTRACT

Forensic and clinical laboratories benefit from DNA standard reference materials (SRMs) that provide the quality control and assurance that their results from sequencing unknown samples are correct. Therefore, the mitochondrial DNA (mtDNA) genome of HL-60, a promyelocytic leukemia cell line, has been completely sequenced by four laboratories and will be available to the forensic and medical communities in the spring of 2003; it will be called National Institute of Standards and Technology (NIST) SRM 2392-I. NIST human mtDNA SRM 2392 will continue to be available and includes the DNA from two apparently healthy individuals. Both SRM 2392 and 2392-I contain all the information (e.g. the sequences of 58 unique primer sets) needed to use these SRMs as positive controls for the amplification and sequencing any DNA. Compared to the templates in SRM 2392, the HL-60 mtDNA in SRM 2392-I has two tRNA differences and more polymorphisms resulting in amino acid changes. Four of these HL-60 mtDNA polymorphisms have been associated with Leber Hereditary Optic Neuropathy (LHON), one as an intermediate mutation and three as secondary mutations. The mtDNA from a cell line (GM10742A) from an individual with LHON was also completely sequenced for comparison and contained some of the same LHON mutations. The combination of these particular LHON associated mutations is also found in phylogenetic haplogroup J and its subset, J2, and may only be indicative that HL-60 belongs to haplogroup J, one of nine haplogroups that characterize Caucasian individuals of European descent or may mean that haplogroup J is more prone to LHON. Both these mtDNA SRMs will provide enhanced quality control in forensic identification, medical diagnosis, and single nucleotide polymorphism detection.

5.
Clin Chem ; 48(12): 2155-63, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12446471

ABSTRACT

BACKGROUND: Most pathogenic human mitochondrial DNA (mtDNA) mutations are heteroplasmic (i.e., mutant and wild-type mtDNA coexist in the same individual) and are difficult to detect when their concentration is a small proportion of that of wild-type mtDNA molecules. We describe a simple methodology to detect low proportions of the single base pair heteroplasmic mutation, A3243G, that has been associated with the disease mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) in total DNA extracted from blood. METHODS: Three peptide nucleic acids (PNAs) were designed to bind to the wild-type mtDNA in the region of nucleotide position 3243, thus blocking PCR amplification of the wild-type mtDNA while permitting the mutant DNA to become the dominant product and readily discernable. DNA was obtained from both apparently healthy and MELAS individuals. Optimum PCR temperatures were based on the measured ultraviolet thermal stability of the DNA/PNA duplexes. The presence or absence of the mutation was determined by sequencing. RESULTS: In the absence of PNAs, the heteroplasmic mutation was either difficult to detect or undetectable by PCR and sequencing. Only PNA 3 successfully inhibited amplification of the wild-type mtDNA while allowing the mutant mtDNA to amplify. In the presence of PNA 3, we were able to detect the heteroplasmic mutation when its concentration was as low as 0.1% of the concentration of the wild-type sequence. CONCLUSION: This methodology permits easy detection of low concentrations of the MELAS A3243G mutation in blood by standard PCR and sequencing methods.


Subject(s)
DNA, Mitochondrial/genetics , MELAS Syndrome/genetics , Peptide Nucleic Acids , Humans , Mutation , Peptide Nucleic Acids/chemical synthesis , Peptide Nucleic Acids/chemistry , Sensitivity and Specificity , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...