Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Lett ; 184(3): 169-75, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19059320

ABSTRACT

Testicular Leydig cells express estrogen receptors and are the predominant source of the male sex steroid hormone testosterone (T). Previous studies demonstrated that genistein acts through estrogen receptors in Leydig cells. In the present study, pre-treatment of Leydig cells isolated from 35 day-old male Long Evans rats with the epidermal growth factor receptor (EGFR) kinase inhibitor AG 1478 abrogated genistein inhibition of T biosynthesis. Also, incubation of Leydig cells in culture medium containing epidermal growth factor (EGF) decreased T secretion (control: 255+/-16; EGF: 190+/-17ng/10(6) cells, 24h) (P<0.05). However, T secretion by genistein-treated Leydig cells (0.1nM, 10muM; 24h) was rescued by post-treatment incubation with forskolin (control: 275+/-28 versus 325+/-35; 780+/-85; ng/10(6) cells, 3h) and dibutyryl cyclic adenosine 3'-5'-monophosphate (dbcAMP) (control: 370+/-65 versus 580+/-75; 2500+/-200; ng/10(6) cells, 3h) (P>0.05). Furthermore, post-treatment incubation with cholera toxin, an activator of G proteins, caused genistein-treated Leydig cells to produce similar T amounts as untreated control (control: 55+/-5 versus 52+/-2 and 47+/-4; ng/10(6) cells, 3h) (P>0.05). These observations imply that genistein action interferes with coupling of transmembrane luteinizing hormone receptors (LHR) with G proteins. Uncoupling of LHR from G proteins adversely affects adenylate cyclase function and impacts LH-dependent stimulation of Leydig cells. These findings have implications for testicular steroidogenesis in individuals exposed to genistein and soy-based products.


Subject(s)
Endocrine Disruptors/toxicity , Genistein/toxicity , Leydig Cells/drug effects , Luteinizing Hormone/metabolism , Signal Transduction/drug effects , Testosterone/biosynthesis , Adenylyl Cyclases/metabolism , Animals , Cells, Cultured , Cholera Toxin/pharmacology , Colforsin/pharmacology , Cyclic CMP/analogs & derivatives , Cyclic CMP/pharmacology , Dose-Response Relationship, Drug , Down-Regulation , Enzyme Activators/pharmacology , Epidermal Growth Factor/metabolism , ErbB Receptors/drug effects , ErbB Receptors/metabolism , Leydig Cells/enzymology , Leydig Cells/metabolism , Male , Protein Kinase Inhibitors/pharmacology , Quinazolines , Rats , Rats, Long-Evans , Receptors, LH/drug effects , Receptors, LH/metabolism , Tyrphostins/pharmacology
2.
Endocrinology ; 148(9): 4475-88, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17569756

ABSTRACT

The use of soy-based products in the diet of infants has raised concerns regarding the reproductive toxicity of genistein and daidzein, the predominant isoflavones in soybeans with estrogenic activity. Time-bred Long-Evans dams were fed diets containing 0, 5, 50, 500, or 1000 ppm of soy isoflavones from gestational d 12 until weaning at d 21 postpartum. Male rats in all groups were fed soy-free diets from postnatal d 21 until 90 d of age. The mean +/- SD concentration of unconjugated (i.e. biologically active) genistein and daidzein in serum from the group of dams maintained on the diet containing the highest amount of isoflavones (1000 ppm) were 17 +/- 27 and 56 +/- 30 nM, respectively, at d 21 postpartum. The concentrations were considerably greater in male offspring (genistein: 73 +/- 46 nM; daidzein: 106 +/- 53 nM). Although steroidogenesis was decreased in individual Leydig cells, male rats from the highest exposure group (1000 ppm diet) exhibited elevated serum levels of the sex steroid hormones androsterone at 21 d (control: 15 +/- 1.5 vs.28 +/- 3.5 ng/ml; P < 0.05) and testosterone at 90 d of age (control: 7.5 +/- 1 vs.17 +/- 2 ng/ml; P < 0.05). Testosterone secretion by immature Leydig cells, isolated from 35-d-old male rats, decreased on exposure to 0.1 nm genistein in vitro (control: 175 +/- 5 vs. 117 +/- 3 ng/10(6) cells per 24 h; P < 0.05), indicative of direct phytoestrogen action. Thus, phytoestrogens have the ability to regulate Leydig cells, and additional studies to assess potential adverse effects of dietary soy-based products on reproductive tract development in neonates are warranted.


Subject(s)
Androgens/metabolism , Isoflavones/pharmacology , Leydig Cells/metabolism , Phytoestrogens/pharmacology , Testis/embryology , Animals , Female , Gestational Age , Leydig Cells/drug effects , Male , Pregnancy , Rats , Rats, Long-Evans , Swine , Testis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...