Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Genom Precis Med ; 11(7): e002070, 2018 07.
Article in English | MEDLINE | ID: mdl-29987113

ABSTRACT

BACKGROUND: Genome-wide association studies have uncovered common variants at many loci influencing human complex traits, such as high-density lipoprotein cholesterol (HDL-C). However, the contribution of the identified genes is difficult to ascertain from current efforts interrogating common variants with small effects. Thus, there is a pressing need for scalable, cost-effective strategies for uncovering causal variants, many of which may be rare and noncoding. METHODS: Here, we used a molecular inversion probe target capture approach to resequence both coding and regulatory regions at 7 HDL-C-associated loci in 797 individuals with extremely high HDL-C versus 735 low-to-normal HDL-C controls. Our targets included protein-coding regions of GALNT2, APOA5, APOC3, SCARB1, CCDC92, ZNF664, CETP, and LIPG (>9 kb) and proximate noncoding regulatory features (>42 kb). RESULTS: Exome-wide genotyping in 1114 of the 1532 participants yielded a >90% genotyping concordance rate with molecular inversion probe-identified variants in ≈90% of participants. This approach rediscovered nearly all established genome-wide association studies associations in GALNT2, CETP, and LIPG loci with significant and concordant associations with HDL-C from our phenotypic extremes design at 0.1% of the sample size of lipid genome-wide association studies. In addition, we identified a novel, rare, CETP noncoding variant enriched in the extreme high HDL-C group (P<0.01, score test). CONCLUSIONS: Our targeted resequencing of individuals at the HDL-C phenotypic extremes offers a novel, efficient, and cost-effective approach for identifying rare coding and noncoding variation differences in extreme phenotypes and supports the rationale for applying this methodology to uncover rare variation-particularly noncoding variation-underlying myriad complex traits.


Subject(s)
Cholesterol, HDL/genetics , Multifactorial Inheritance , Open Reading Frames , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Adult , Female , Genome-Wide Association Study , Humans , Male
2.
Science ; 351(6278): 1166-71, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26965621

ABSTRACT

Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).


Subject(s)
Cholesterol, HDL/blood , Coronary Disease/blood , Coronary Disease/genetics , Scavenger Receptors, Class B/genetics , Aged , Amino Acid Substitution , Animals , DNA Mutational Analysis , Female , Genetic Variation , Heterozygote , Homozygote , Humans , Leucine/genetics , Male , Mice , Middle Aged , Proline/genetics , Protein Processing, Post-Translational , Risk , Scavenger Receptors, Class B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...