Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 122(46): 9031-9042, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30365322

ABSTRACT

Triply resonant sum frequency (TRSF) spectroscopy is a fully coherent mixed vibrational-electronic spectroscopic technique that is ideally suited for probing the vibrational-electronic couplings that become important in driving reactions. We have used cyanocobalamin (CNCbl) and deuterated aquacobalamin (D2OCbl+) as model systems for demonstrating the feasibility of using the selectivity of coherent multidimensional spectroscopy to resolve electronic states within the broad absorption spectra of transition metal complexes and identify the nature of the vibrational and electronic state couplings. We resolve three short and long axis vibrational modes in the vibrationally congested 1400-1750 cm-1 region that are individually coupled to different electronic states in the 18 000-21 000 cm-1 region but have minimal coupling to each other. Double resonance with the individual vibrational fundamentals and their overtones selectively enhances the corresponding electronic resonances and resolves features within the broad absorption spectrum. This work demonstrates the feasibility of identifying coupling between different pairs of vibrational states with different electronic states that together form the reaction coordinate surface of transition metal enzymes.

2.
J Phys Chem A ; 118(17): 3112-9, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24707979

ABSTRACT

This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition. The signal intensity grows when the laser frequencies are all in resonance with coupled vibrational and electronic states. The method therefore provides electronic enhancement of IR-active vibrational modes. These modes may be buried beneath solvent in the IR spectrum and also be Raman-inactive and therefore inaccessible by other techniques. The method is presented on the centrosymmetric complex copper phthalocyanine tetrasulfonate. In this study, the two vibrational frequencies were scanned across ring-breathing modes, while the visible frequency was left in resonance with the copper phthalocyanine tetrasulfonate Q band, resulting in a two-dimensional infrared plot that also reveals coupling between vibrational states. TRSF has the potential to be a very useful probe of structurally similar biological motifs such as hemes, as well as synthetic transition-metal complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...