Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(13): 6847-6862, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32469516

ABSTRACT

Every day, hundreds of millions of people worldwide take nonsteroidal anti-inflammatory drugs (NSAIDs), often in conjunction with multiple other medications. In the bloodstream, NSAIDs are mostly bound to serum albumin (SA). We report the crystal structures of equine serum albumin complexed with four NSAIDs (ibuprofen, ketoprofen, etodolac, and nabumetone) and the active metabolite of nabumetone (6-methoxy-2-naphthylacetic acid, 6-MNA). These compounds bind to seven drug-binding sites on SA. These sites are generally well-conserved between equine and human SAs, but ibuprofen binds to both SAs in two drug-binding sites, only one of which is common. We also compare the binding of ketoprofen by equine SA to binding of it by bovine and leporine SAs. Our comparative analysis of known SA complexes with FDA-approved drugs clearly shows that multiple medications compete for the same binding sites, indicating possibilities for undesirable physiological effects caused by drug-drug displacement or competition with common metabolites. We discuss the consequences of NSAID binding to SA in a broader scientific and medical context, particularly regarding achieving desired therapeutic effects based on an individual's drug regimen.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Serum Albumin/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/blood , Binding Sites , Biological Transport , Models, Molecular , Protein Conformation , Serum Albumin/chemistry
2.
Chem Sci ; 10(6): 1607-1618, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30842823

ABSTRACT

Serum albumin is the most abundant protein in mammalian blood plasma and is responsible for the transport of metals, drugs, and various metabolites, including hormones. We report the first albumin structure in complex with testosterone, the primary male sex hormone. Testosterone is bound in two sites, neither of which overlaps with the previously suggested Sudlow site I. We determined the binding constant of testosterone to equine and human albumins by two different methods: tryptophan fluorescence quenching and ultrafast affinity extraction. The binding studies and similarities between residues comprising the binding sites on serum albumins suggest that testosterone binds to the same sites on both proteins. Our comparative analysis of albumin complexes with hormones, drugs, and other biologically relevant compounds strongly suggests interference between a number of compounds present in blood and testosterone transport by serum albumin. We discuss a possible link between our findings and some phenomena observed in human patients, such as low testosterone levels in diabetic patients.

3.
Nat Protoc ; 13(5): 1062-1090, 2018 05.
Article in English | MEDLINE | ID: mdl-29674755

ABSTRACT

Metals have crucial roles in many physiological, pathological, toxicological, pharmaceutical, and diagnostic processes. Proper handling of metal-containing macromolecule samples for structural studies is not trivial, and failure to handle them properly is often a source of irreproducibility caused by issues such as pH changes, incorporation of unexpected metals, or oxidization/reduction of the metal. This protocol outlines the guidelines and best practices for characterizing metal-binding sites in protein structures and alerts experimenters to potential pitfalls during the preparation and handling of metal-containing protein samples for X-ray crystallography studies. The protocol features strategies for controlling the sample pH and the metal oxidation state, recording X-ray fluorescence (XRF) spectra, and collecting diffraction data sets above and below the corresponding metal absorption edges. This protocol should allow experimenters to gather sufficient evidence to unambiguously determine the identity and location of the metal of interest, as well as to accurately characterize the coordinating ligands in the metal binding environment within the protein. Meticulous handling of metal-containing macromolecule samples as described in this protocol should enhance experimental reproducibility in biomedical sciences, especially in X-ray macromolecular crystallography. For most samples, the protocol can be completed within a period of 7-190 d, most of which (2-180 d) is devoted to growing the crystal. The protocol should be readily understandable to structural biologists, particularly protein crystallographers with an intermediate level of experience.


Subject(s)
Binding Sites , Crystallography, X-Ray/methods , Metals/metabolism , Proteins/chemistry , Proteins/metabolism , Protein Binding
4.
Biochemistry ; 57(6): 963-977, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29309127

ABSTRACT

The d-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers and gene duplications and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2HADH family; specifically, we show that the previously delineated glyoxylate/hydroxypyruvate reductase (GHPR) subfamily consists of two evolutionary separated GHRA and GHRB subfamilies. We compare two representatives of these subfamilies from Sinorhizobium meliloti (SmGhrA and SmGhrB), employing a combination of biochemical, structural, and bioinformatics approaches. Our kinetic results show that both enzymes reduce several 2-ketocarboxylic acids with overlapping, but not equivalent, substrate preferences. SmGhrA and SmGhrB show highest activity with glyoxylate and hydroxypyruvate, respectively; in addition, only SmGhrB reduces 2-keto-d-gluconate, and only SmGhrA reduces pyruvate (with low efficiency). We present nine crystal structures of both enzymes in apo forms and in complexes with cofactors and substrates/substrate analogues. In particular, we determined a crystal structure of SmGhrB with 2-keto-d-gluconate, which is the biggest substrate cocrystallized with a 2HADH member. The structures reveal significant differences between SmGhrA and SmGhrB, both in the overall structure and within the substrate-binding pocket, offering insight into the molecular basis for the observed substrate preferences and subfamily differences. In addition, we provide an overview of all GHRA and GHRB structures complexed with a ligand in the active site.


Subject(s)
Alcohol Oxidoreductases/chemistry , Aldehyde Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Hydroxypyruvate Reductase/chemistry , Sinorhizobium meliloti/enzymology , Alcohol Oxidoreductases/classification , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aldehyde Oxidoreductases/classification , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Hydroxypyruvate Reductase/classification , Hydroxypyruvate Reductase/genetics , Hydroxypyruvate Reductase/metabolism , Kinetics , Models, Molecular , Phylogeny , Protein Conformation , Sinorhizobium meliloti/chemistry , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Substrate Specificity
5.
Acta Crystallogr D Struct Biol ; 73(Pt 3): 223-233, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28291757

ABSTRACT

Metals are essential in many biological processes, and metal ions are modeled in roughly 40% of the macromolecular structures in the Protein Data Bank (PDB). However, a significant fraction of these structures contain poorly modeled metal-binding sites. CheckMyMetal (CMM) is an easy-to-use metal-binding site validation server for macromolecules that is freely available at http://csgid.org/csgid/metal_sites. The CMM server can detect incorrect metal assignments as well as geometrical and other irregularities in the metal-binding sites. Guidelines for metal-site modeling and validation in macromolecules are illustrated by several practical examples grouped by the type of metal. These examples show CMM users (and crystallographers in general) problems they may encounter during the modeling of a specific metal ion.


Subject(s)
Metals/metabolism , Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Databases, Protein , Magnesium/metabolism , Models, Molecular , Proteins/chemistry , Sodium/metabolism , Software
6.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 49-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26894534

ABSTRACT

The Filoviridae family of negative-sense, single-stranded RNA (ssRNA) viruses is comprised of two species of Marburgvirus (MARV and RAVV) and five species of Ebolavirus, i.e. Zaire (EBOV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV) and Bundibugyo (BDBV). In each of these viruses the ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. It is tightly associated with the viral RNA in the nucleocapsid, and during the lifecycle of the virus is essential for transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. The structure of the unique C-terminal globular domain of the NP from EBOV has recently been determined and shown to be structurally unrelated to any other known protein [Dziubanska et al. (2014), Acta Cryst. D70, 2420-2429]. In this paper, a study of the C-terminal domains from the NP from the remaining four species of Ebolavirus, as well as from the MARV strain of Marburgvirus, is reported. As expected, the crystal structures of the BDBV and TAFV proteins show high structural similarity to that from EBOV, while the MARV protein behaves like a molten globule with a core residual structure that is significantly different from that of the EBOV protein.


Subject(s)
Ebolavirus/chemistry , Marburgvirus/chemistry , Nucleoproteins/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Hemorrhagic Fever, Ebola/virology , Marburg Virus Disease/virology , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment
7.
Mol Immunol ; 71: 143-151, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26896718

ABSTRACT

Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews.


Subject(s)
Cetirizine/chemistry , Serum Albumin/chemistry , Amino Acid Sequence , Animals , Binding Sites/physiology , Cetirizine/metabolism , Crystallography, X-Ray , Histamine H1 Antagonists, Non-Sedating/chemistry , Histamine H1 Antagonists, Non-Sedating/metabolism , Horses , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Serum Albumin/metabolism
8.
Protein Sci ; 25(3): 720-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26660914

ABSTRACT

The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.


Subject(s)
Crystallization/methods , Proteins/chemistry , Acetyltransferases/chemistry , Acetyltransferases/isolation & purification , Animals , Artifacts , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/isolation & purification , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Reproducibility of Results , Sigma Factor/chemistry , Sigma Factor/isolation & purification , Staphylococcus aureus/chemistry , Survivin , Xenopus/metabolism , Xenopus Proteins/chemistry
9.
Chem Sci ; 7(11): 6635-6648, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28567254

ABSTRACT

Zinc is an essential nutrient in the body; it is required for the catalytic activity of many hundreds of human enzymes and virtually all biological processes, therefore its homeostasis and trafficking is of crucial interest. Serum albumin is the major carrier of Zn2+ in the blood and is required for its systemic distribution. Here we present the first crystal structures of human serum albumin (HSA) and equine serum albumin (ESA) in complex with Zn2+. The structures allow unambiguous identification of the major zinc binding site on these two albumins, as well as several further, weaker zinc binding sites. The major site in both HSA and ESA has tetrahedral geometry and comprises three protein ligands from the sidechains of His67, His247 and Asp249 and a water molecule. Isothermal titration calorimetric studies of a HSA H67A mutant confirm this to be the highest affinity Zn2+ site. Furthermore, analysis of Zn2+ binding to HSA and ESA proved the presence of secondary sites with 20-50-fold weaker affinities, which may become of importance under particular physiological conditions. Both calorimetry and crystallography suggest that ESA possesses an additional site compared to HSA, involving Glu153, His157 and His288. The His157 residue is replaced by Phe in HSA, incapable of metal coordination. Collectively, these findings are critical to our understanding of the role serum albumin plays in circulatory Zn2+ handling and cellular delivery.

10.
Expert Opin Drug Discov ; 10(9): 975-89, 2015.
Article in English | MEDLINE | ID: mdl-26177814

ABSTRACT

INTRODUCTION: Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. AREAS COVERED: This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. EXPERT OPINION: X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.


Subject(s)
Crystallography, X-Ray/methods , Drug Design , Drug Discovery/trends , Computational Biology , Humans , Pharmaceutical Preparations/chemistry , Reproducibility of Results
11.
Nucleic Acids Res ; 43(7): 3789-801, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25800744

ABSTRACT

The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg(2+)-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg(2+) ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 'reliable' RNA-bound Mg(2+) sites. The normalized frequencies by which specific RNA atoms coordinate Mg(2+) were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg(2+) sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg(2+)-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg(2+)-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs.


Subject(s)
Magnesium/metabolism , RNA/metabolism , Binding Sites , Crystallography, X-Ray , Nucleic Acid Conformation , RNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...