Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 195(6): 1204-13, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23292769

ABSTRACT

In Gram-positive bacteria, CodY is an important regulator of genes whose expression changes under conditions of nutrient limitation. Bacillus anthracis CodY represses or activates directly or indirectly approximately 500 genes. Affinity purification of CodY-DNA complexes was used to identify the direct targets of CodY. Of the 389 DNA binding sites that were copurified with CodY, 132 sites were in or near the regulatory regions governing the expression of 197 CodY-controlled genes, indicating that CodY controls many other genes indirectly. CodY-binding specificity was verified using electrophoretic mobility shift and DNase I footprinting assays for three CodY targets. Analysis of the bound sequences led to the identification of a B. anthracis CodY-binding consensus motif that was found in 366 of the 389 affinity-purified DNA regions. Regulation of the expression of the two genes directly controlled by CodY, sap and eag, encoding the two surface layer (S-layer) proteins, was analyzed further by monitoring the expression of transcriptional lacZ reporter fusions in parental and codY mutant strains. CodY proved to be a direct repressor of both sap and eag expression. Since the expression of the S-layer genes is under the control of both CodY and PagR (a regulator that responds to bicarbonate), their expression levels respond to both metabolic and environmental cues.


Subject(s)
Bacillus anthracis/genetics , Membrane Glycoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bacillus anthracis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites/genetics , DNA Footprinting , DNA-Binding Proteins/analysis , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial , Genes, Reporter , Membrane Glycoproteins/genetics , Mutation , Promoter Regions, Genetic , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Infect Immun ; 76(1): 141-52, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17954724

ABSTRACT

The saeRS two-component regulatory system regulates transcription of multiple virulence factors in Staphylococcus aureus. In the present study, we demonstrated that the saePQRS region in Staphylococcus epidermidis is transcriptionally regulated in a temporal manner and is arranged in a manner similar to that previously described for S. aureus. Studies using a mouse foreign body infection model demonstrated that the virulence of strain 1457 and the virulence of a mutant, strain 1457 saeR, were statistically equivalent. However, histological analyses suggested that the polymorphonuclear neutrophil response at 2 days postinfection was significantly greater in 1457-infected mice than in 1457 saeR-infected mice, demonstrating that SaeR influences the early, acute phases of infection. Microarray analysis demonstrated that a saeR mutation affected the transcription of 65 genes (37 genes were upregulated and 28 genes were downregulated); in particular, 8 genes that facilitate growth under anaerobic conditions were downregulated in 1457 saeR. Analysis of growth under anaerobic conditions demonstrated that 1457 saeR had a decreased growth rate compared to 1457. Further metabolic experiments demonstrated that 1457 saeR had a reduced capacity to utilize nitrate as a terminal electron acceptor and exhibited increased production of lactic acid in comparison to 1457. These data suggest that in S. epidermidis SaeR functions to regulate the transition between aerobic growth and anaerobic growth. In addition, when grown anaerobically, 1457 saeR appeared to compensate for the redox imbalance created by the lack of electron transport-mediated oxidation of NADH to NAD+ by increasing lactate dehydrogenase activity and the subsequent oxidation of NADH.


Subject(s)
Bacterial Proteins/genetics , Inflammation/metabolism , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/metabolism , Anaerobiosis , Animals , Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Male , Mice , Mutation , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/pathogenicity , Time Factors , Transcription Factors , Transcription, Genetic , Virulence
3.
Can J Microbiol ; 53(1): 82-91, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17496953

ABSTRACT

The production of polysaccharide intercellular adhesin (PIA) is an essential process in foreign body infections mediated by Staphylococcus epidermidis. Transcriptional regulation of the icaADBC operon, the genes responsible for production of enzymes that synthesize PIA, is multi-factorial and involves at least SarA and sigmaB. Transcriptional and promoter fusion studies revealed that the decreased transcription of the icaADBC operon observed in a S. epidermidis 1457 sigB mutant is not mediated through a direct interaction of sigmaB-RNA polymerase at the icaADBC promoter region but instead through the upregulation of IcaR, a known repressor of icaADBC transcription. Transcriptional analysis of a 1457 sigB-icaR double mutant confirmed that the decreased icaADBC transcript in 1457 sigB is IcaR dependent. Furthermore, primer extension studies suggest that the icaR promoter appears to be sigmaA dependent, suggesting that sigmaB indirectly controls icaR transcription through an unknown pathway. In addition, it was confirmed that the loss of SarA results in the loss of icaADBC transcription and PIA production in S. epidermidis. It was further demonstrated, through the over-production of SarA in 1457 sigB, that the loss of sarP1 promoter activity in 1457 sigB has little or no effect on the loss of PIA production in this mutant. Finally, it was demonstrated that PIA production could be restored in both 1457 sigB and 1457 sarA by complementing these mutants with a full-length icaADBC operon controlled by a cadmium-inducible noncognate promoter. It is concluded that sigmaB and SarA operate independently of each other to regulate PIA production and biofilm development in S. epidermidis.


Subject(s)
Bacterial Proteins/physiology , Biofilms/growth & development , Polysaccharides, Bacterial/metabolism , Sigma Factor/physiology , Staphylococcus epidermidis/physiology , Trans-Activators/physiology , Operon/physiology , Staphylococcus epidermidis/pathogenicity
4.
J Med Microbiol ; 53(Pt 5): 367-374, 2004 May.
Article in English | MEDLINE | ID: mdl-15096544

ABSTRACT

Production of biofilm in Staphylococcus epidermidis is mediated through enzymes produced by the four-gene operon ica and is subject to phenotypic variation. The purpose of these experiments was to investigate the regulation of ica and icaR transcription in phenotypic variants produced by multiple unrelated isolates of S. epidermidis. Ten isolates were chosen for the study, four of which contained IS256. IS256 mediates a reversible inactivation of ica in approximately 30 % of phenotypic variants. All ten strains produced at least two types of phenotypic variant (intermediate and smooth) in which biofilm formation was significantly impaired. Reversion studies indicated that all phenotypic variants were stable after overnight growth, but began to revert to other phenotypic forms after 5 days of incubation at 37 degrees C. ica transcriptional analysis was performed on phenotypic variants from three IS256-negative isolates; 1457, SE5 and 14765. This analysis demonstrated that ica transcription was significantly reduced in the majority of phenotypic variants, although two variants from SE5 and 1457 produced wild-type quantities of ica transcript. Analysis of seven additional phenotypic variants from SE5 revealed that ica expression was only reduced in three. Expression of icaR transcript was unaffected in all smooth phenotypic variants. Mutations within ica were identified in two SE5 variants with wild-type levels of ica transcription. It is concluded that mutation and transcriptional regulation of ica are the primary mechanisms that govern phenotypic variation of biofilm formation within IS256-negative S. epidermidis.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Mutation , Staphylococcus epidermidis/classification , Bacterial Proteins/genetics , Genotype , Humans , Molecular Sequence Data , Phenotype , Sequence Analysis, DNA , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/growth & development , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...