Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 102(9): 8559-8570, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301843

ABSTRACT

Because of its high yield and the ability of cows to graze it in situ, fodder beet (FB) has become a popular crop in grazing systems, particularly for nonlactating cows. Due to its high sugar content, however, the transition to FB must be managed carefully to avoid rumen acidosis and associated metabolic dysfunction. The initial consumption of FB reduces ruminal pH; however, it is unclear whether this affects liver metabolism and results in systemic inflammation, as has been reported during subacute ruminal acidosis from high-grain diets. We used a quantitative case study approach to undertake additional measurements on a project demonstrating the effects of FB on urinary nitrogen excretion. The objective of our component, therefore, was to determine whether the inclusion of high rates of FB in the diet of nonlactating cows changed indicators of hepatic metabolism relative to a standard diet for nonlactating grazing cows. During the nonlactating period, multiparous, pregnant Holstein-Friesian cows were randomly assigned (n = 15 per treatment) to either pasture (8 kg of DM/cow per day) with corn silage (4 kg of DM/cow per day; PA) or transitioning onto an FB diet (8 kg of DM/cow per day) with pasture silage (4 kg of DM/cow per day; BT) over 14 d. Blood was sampled and the liver was biopsied during the adaptation period and after 7 d of full diet allocation. The hepatic expression of genes involved in peroxisomal oxidation was increased in cows adapting to FB, whereas the expression of genes involved in mitochondrial oxidation was increased when cows were on their full allocation of FB. These results indicate changes to fatty acid metabolism with FB consumption. Expression of 2 genes involved in the unfolded protein response was greater during the adaptation period in cows consuming FB, potentially reflecting negative effects of transitioning onto the FB diet on hepatic metabolism. Interestingly, expression of genes involved in the methionine cycle was increased in the BT cows. We hypothesize that this is a result of FB betaine absorption, although it is unclear to what extent betaine escapes ruminal degradation. While on the full diet allocation, there were lower serum concentrations of markers of hepatic stress in BT cows and no difference in expression of genes involved in oxidative stress compared with pasture-fed cows. However, there was an increase in plasma haptoglobin concentrations, indicative of an acute inflammatory response in BT cows. From this case study, we conclude that the results indicate no negative effects of the FB diet on liver metabolism and, possibly, positive effects on hepatic function. It appears, therefore, that the transition of nonlactating cows onto an FB diet can be managed to minimize the negative effects of the high sugar intake. Further research on the amount of betaine that escapes ruminal degradation in cows consuming FB would be of value to better understand whether betaine reduces liver damage in dairy cows consuming FB.


Subject(s)
Beta vulgaris , Cattle/metabolism , Diet/veterinary , Liver/metabolism , Animal Feed/adverse effects , Animals , Antioxidants/analysis , Beta vulgaris/adverse effects , Beta vulgaris/metabolism , Fatty Acids/metabolism , Female , Gene Expression , Hydrogen-Ion Concentration , Lactation/physiology , Milk/chemistry , Nitrogen/urine , Pregnancy , Rumen/chemistry , Zea mays
2.
J Dairy Sci ; 99(7): 5820-5827, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27085418

ABSTRACT

Hepatic gluconeogenesis is essential for maintenance of whole body glucose homeostasis and glucose supply for mammary lactose synthesis in the dairy cow. Upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC) during the transition period is vital in the adaptation to the greater glucose demands associated with peripartum lactogenesis. The objective of this study was to determine if PC transcription in hepatocytes is regulated by DNA methylation and if treatment with a nonsteroidal anti-inflammatory drug (NSAID) alters methylation of an upstream DNA sequence defined as promoter 1. Dairy cows were left untreated (n=20), or treated with a NSAID during the first 5 d postcalving (n=20). Liver was biopsied at d 7 precalving and d 7, 14, and 28 postcalving. Total PC and transcript specific gene expression was quantified using quantitative PCR and DNA methylation of promoter 1 was quantified using bisulfite Sanger sequencing. Expression of PC changed over the transition period, with increased expression postcalving occurring concurrently with increased circulating concentration of nonesterified fatty acids. The DNA methylation percentage was variable at all sites quantified and ranged from 21 to 54% across the 15 CpG dinucleotides within promoter 1. The DNA methylation at wk 1 postcalving, however, was not correlated with gene expression of promoter 1-regulated transcripts and we did not detect an effect of NSAID treatment on DNA methylation or PC gene expression. Our results do not support a role for DNA methylation in regulating promoter 1-driven gene expression of PC at wk 1 postcalving. Further research is required to determine the mechanisms regulating increased PC expression over the transition period.


Subject(s)
Lactation , Pyruvate Carboxylase/metabolism , Animals , Cattle , Epigenesis, Genetic , Female , Gene Expression , Gene Expression Regulation , Liver/metabolism , Milk/metabolism , Postpartum Period/metabolism
3.
J Dairy Sci ; 99(4): 3041-3055, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26851848

ABSTRACT

Milking cows once daily (1×) is a management practice occasionally used during mid/late lactation in pasture-based systems. It has been postulated that 1× milking will reduce dry matter intake (DMI) and increase body condition score (BCS) gain; however, this has not been quantified. Lactating, pregnant Holstein-Friesian dairy cows (n=52) were allocated to either 1× or twice-daily (2×) milking in mid-January (summer, 175d in milk). To obtain accurate DMI measurements, cows underwent 4 periods in a Calan gate indoor feeding facility, interspersed with grazing outdoors. Milk production, body weight (BW), and BCS were recorded 2 wk before treatment start (-2 wk) and weekly thereafter. Blood variables were recorded at -2 wk and weekly when indoors. Liver was biopsied at -2, 2, and 10 wk, and hepatic gene expression measured using quantitative PCR. Milking cows 1× tended to lower DMI (17.8 vs. 18.2 kg of dry matter), but increased BCS gain (0.36 vs. 0.13 BCS units) and BW (546 vs. 533 kg) at wk 12 relative to 2×. The greater BCS and BW of cows milked 1× compared with 2× were reflected in lower plasma concentrations of nonesterified fatty acids and lower transcription of genes involved in the oxidation of fatty acids, indicating reduced release and processing of fatty acids. Cows milked 1× produced 20% less milk, and although milk fat and protein concentrations were increased relative to cows milked 2×, yields of fat and protein were 14 and 17% less, respectively. The reduction in milk production with 1× milking (14.1 vs. 16.8 kg/cow per d energy-corrected milk) was accompanied by increases in blood concentrations of glucose and insulin, with a concurrent decrease in the transcription of the insulin receptor and gluconeogenic genes. These results indicate a coordinated response to reduce glucose production due to decreased mammary demand. Expression of 2 genes linked to inflammation and adipokine signaling was reduced in cows milked 1× and may indicate a lower inflammatory state in the liver of cows milked 1× in late lactation. No effect was found of milking frequency during late lactation on milk production in the subsequent lactation. In summary, although 1× milking tended to reduce DMI and increase BCS in late lactation, these effects were lower than what is commonly supposed in pasture-based dairy systems. The modest BCS gains need to be considered with the reduced milk production when adopting 1× milking as a management strategy.


Subject(s)
Cattle/physiology , Dairying/methods , Gene Expression Regulation , Lactation/physiology , Liver/metabolism , Animals , Body Constitution/physiology , Cattle/genetics , Cattle/metabolism , Eating/physiology , Fatty Acids/metabolism , Female , Milk/metabolism , Pregnancy , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...