Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 42(7): 1995-2010, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28508174

ABSTRACT

The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.


Subject(s)
Analgesics/therapeutic use , Anticonvulsants/therapeutic use , Antidepressive Agents/therapeutic use , Disease Models, Animal , Neuralgia/drug therapy , Pain Measurement/drug effects , Analgesics/pharmacology , Animals , Anticonvulsants/pharmacology , Antidepressive Agents/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Male , Mice , Neuralgia/pathology , Nipecotic Acids/pharmacology , Nipecotic Acids/therapeutic use , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Rodentia , Tiagabine
2.
Neurochem Res ; 42(7): 1904-1918, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28303498

ABSTRACT

The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.


Subject(s)
Anticonvulsants/therapeutic use , Drug Evaluation, Preclinical/standards , Drug Resistant Epilepsy/drug therapy , Animals , Drug Evaluation, Preclinical/methods , Drug Resistant Epilepsy/chemically induced , Drug Resistant Epilepsy/etiology , Electroshock/adverse effects , Kainic Acid/toxicity , Kindling, Neurologic/drug effects , Kindling, Neurologic/physiology , Male , Mice , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...