Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroeng Rehabil ; 16(1): 106, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31455358

ABSTRACT

BACKGROUND: Gait impairment is a common consequence of stroke and typically involves a hemiparetic or asymmetric walking pattern. Asymmetric gait patterns are correlated with decreased gait velocity and efficiency as well as increased susceptibility to serious falls and injuries. RESEARCH QUESTION: This paper presents an innovative device worn on a foot for gait rehabilitation post stroke. The device generates a backward motion to the foot, which is designed to exaggerate the existing step length asymmetry while walking over ground. We hypothesize this motion will decrease gait asymmetry and improve functional walking in individuals with chronic stroke. METHODS: Six participants with chronic stroke, more than one year post stroke, received four weeks of gait training with three sessions per week. Each session included 30 min of walking over ground using the wearable device. Gait symmetry and functional walking were assessed before and after training. RESULTS: All participants improved step length symmetry, and four participants improved double limb support symmetry. All participants improved on all three functional outcomes (gait velocity, Timed Up and Go Test, and 6-Minute Walk Test), and five participants improved beyond the minimal detectable change or meaningful change in at least one functional outcome. CONCLUSION: The results indicate that the presented device may help improve stroke patients' walking ability and warrant further study. A gait training approach using this new device may enable and expand long-term continuous gait rehabilitation outside the clinic following stroke. TRIAL REGISTRATION: NCT02185404. Registered July 9, 2014, https://clinicaltrials.gov/ct2/show/NCT02185404.


Subject(s)
Gait Disorders, Neurologic/rehabilitation , Stroke Rehabilitation/instrumentation , Walking , Wearable Electronic Devices , Aged , Biomechanical Phenomena , Feasibility Studies , Female , Foot , Functional Laterality , Gait Disorders, Neurologic/etiology , Humans , Longitudinal Studies , Male , Middle Aged , Paresis/rehabilitation , Treatment Outcome
2.
IEEE Int Conf Rehabil Robot ; 2017: 424-429, 2017 07.
Article in English | MEDLINE | ID: mdl-28813856

ABSTRACT

This research focuses on the difference between the Kinetic Crutch Tip (KCT) and a Standard Rubber Tip. Additionally, the effect of KCT stiffness on the crutch gait cycle and the reaction forces were investigated. This study also examined the maximum backward angle that a crutch is able to move forward without any external forces as well as the ratio of positive to negative horizontal forces were considered. The results were obtained in two ways: one by having subjects walk on the crutches and another to reduce the variability of human walking by measuring the resulting motion only using weights attached to the crutch tip. The results of this measurement indicate an increase in maximum backward angle for Kinetic Crutch Tips. This increase in the rotation angle shows an improvement in forward motion of the crutch.


Subject(s)
Crutches , Rehabilitation/instrumentation , Rehabilitation/methods , Adult , Biomechanical Phenomena , Equipment Design , Female , Humans , Male , Walking/physiology , Young Adult
3.
Front Psychol ; 6: 199, 2015.
Article in English | MEDLINE | ID: mdl-25774144

ABSTRACT

This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW) model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial pathology.

4.
IEEE Int Conf Rehabil Robot ; 2013: 6650509, 2013 Jun.
Article in English | MEDLINE | ID: mdl-24187324

ABSTRACT

This research compares walking over ground, on a split-belt treadmill, on a tied-belt treadmill, and on the Gait Enhancing Mobile Shoe (GEMS) in both humans and simulated on a passive dynamic model. Passive Dynamic Walkers (PDW) have been researched for decades, yet only recently has the model been used significantly in gait rehabilitation. We aim to identify how well the two-dimensional PDW can be used as a kinematic approximation tool for gait analysis. In this work, the PDW was scaled according to an anthropomorphic human model. For comparison, measurements were taken of humans walking in the same four environments. For normal walking, the PDW was found to be a good approximation for symmetric and rhythmic hip position, foot position, and velocity profiles. Tied-belt and split-belt treadmill model estimations revealed that the PDW's lack of dorsiflexion, joint stiffness, and joint damping limited the comparison, however trends between the human and the model agreed. The kinematics of the GEMS showed good agreement in interlimb interactions indicating that the PDW can be used as a good kinematic predictor for the GEMS.


Subject(s)
Biomechanical Phenomena/physiology , Exercise Therapy/instrumentation , Gait/physiology , Robotics/instrumentation , Shoes , Walking/physiology , Adult , Exercise Therapy/methods , Gait Disorders, Neurologic/rehabilitation , Humans , Male
5.
Article in English | MEDLINE | ID: mdl-24111342

ABSTRACT

While the dynamics and mathematics of passive dynamic walking (PDW) models have been extensively researched, it has not been until recently that they have been used for practical applications in rehabilitation and gait analysis. In this study, we evaluate the validity of using a two dimensional PDW for human gait analysis. Here, a PDW model is compared to recorded kinematic and kinetic walking data under normal conditions. We also study asymmetric gait by imposing a shank mass asymmetry and comparing it to a PDW model under the same asymmetric conditions. Kinematic and kinetic data for normal gait was taken from one subject using a motion capture system and a force plate, respectively. Gait under the asymmetric shank mass conditions was recorded by measuring the drifting radius of curvature from five participants walking blindfolded with a mass attached to their shank. While the PDW model lacks ankles (dorsiflexion), joint damping, and joint stiffness, the kinematics, kinetics, and gait asymmetry were comparable. Kinetic comparisons show agreement in general ground reaction force magnitude and profile. Kinematic results yield a good match in temporal and spatial gait characteristics. Asymmetric analysis of gait demonstrated that the PDW model can accurately predict the direction of step asymmetry.


Subject(s)
Biomechanical Phenomena , Gait/physiology , Leg/physiology , Models, Biological , Walking/physiology , Adult , Humans , Kinetics , Leg/anatomy & histology , Male , Models, Structural
6.
IEEE Int Conf Robot Autom ; 2012: 4124-4129, 2012 May.
Article in English | MEDLINE | ID: mdl-23484067

ABSTRACT

This paper presents a Gait Enhancing Mobile Shoe (GEMS) that mimics the desirable kinematics of a split-belt treadmill except that it does so over ground. Split-belt treadmills, with two separate treads running at different speeds, have been found useful in the rehabilitation of persons with asymmetric walking patterns. Although in preliminary testing, beneficial after-effects have been recorded, various drawbacks include the stationary nature of the split-belt treadmill and the inability to keep a person on the split-belt treadmill for an extended period of time. For this reason, the after-effects for long-term gait training are still unknown. The mobile ability of the GEMS outlined in this paper enables it to be worn in different environments such as in one's own house and also enables it to be worn for a longer period of time since the GEMS is completely passive. Healthy subject testing has demonstrated that wearing this shoe for twenty minutes can alter the wearer's gait and will generate after-effects in a similar manner as a split-belt treadmill does.

7.
IEEE Int Conf Rehabil Robot ; 2011: 5975417, 2011.
Article in English | MEDLINE | ID: mdl-22275620

ABSTRACT

Walking on a split-belt treadmill, which has two belts that can be run at different speeds, has been shown to improve walking patterns post-stroke. However, these improvements are only temporarily retained once individuals transition to walking over ground. We hypothesize that longer-lasting effects would be observed if the training occurred during natural walking over ground, as opposed to on a treadmill. In order to study such long-term effects, we have developed a mobile and portable device which can simulate the same gait altering movements experienced on a split-belt treadmill. The new motion controlled gait enhancing mobile shoe improves upon the previous version's drawbacks. This version of the GEMS has motion that is continuous, smooth, and regulated with on-board electronics. A vital component of this new design is the Archimedean spiral wheel shape that redirects the wearer's downward force into a horizontal backward motion. The design is passive and does not utilize any motors. Its motion is regulated only by a small magnetic particle brake. Further experimentation is needed to evaluate the long-term after-effects.


Subject(s)
Gait/physiology , Self-Help Devices , Stroke Rehabilitation , Humans , Movement/physiology
8.
Paladyn ; 2(4)2011 Dec 01.
Article in English | MEDLINE | ID: mdl-24371521

ABSTRACT

Hemiparesis is a frequent and disabling consequence of stroke and can lead to asymmetric and inefficient walking patterns. Training on a split-belt treadmill, which has two separate treads driving each leg at a different speed, can correct such asymmetries post-stroke. However, the effects of split-belt treadmill training only partially transfer to everyday walking over ground and extended training sessions are required to achieve long-lasting effects. Our aim is to develop an alternative device, the Gait Enhancing Mobile Shoe (GEMS), that mimics the actions of the split-belt treadmill, but can be used during overground walking and in one's own home, thus enabling long-term training. The GEMS does not require any external power and is completely passive; all necessary forces are redirected from the natural forces present during walking. Three healthy subjects walked on the shoes for twenty minutes during which one GEMS generated a backward motion and the other GEMS generated a forward motion. Our preliminary experiments suggest that wearing the GEMS did cause subjects to modify coordination between the legs and these changes persisted when subjects returned to normal over-ground walking. The largest effects were observed in measures of temporal coordination (e.g., duration of double-support). These results suggest that the GEMS is capable of altering overground walking coordination in healthy controls and could potentially be used to correct gait asymmetries post-stroke.

SELECTION OF CITATIONS
SEARCH DETAIL
...