Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 244(6): 977-994, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38293709

ABSTRACT

Morphological studies typically avoid using osteological samples that derive from captive animals because it is assumed that their morphology is not representative of wild populations. Rearing environments indeed differ between wild and captive individuals. For example, mechanical properties of the diets provided to captive animals can be drastically different from the food present in their natural habitats, which could impact cranial morphology and dental health. Here, we examine morphological differences in the maxillae of wild versus captive chimpanzees (Pan troglodytes) given the prominence of this species in comparative samples used in human evolution research and the key role of the maxilla in such studies. Size and shape were analysed using three-dimensional geometric morphometric methods based on computed tomography scans of 94 wild and 30 captive specimens. Captive individuals have on average larger and more asymmetrical maxillae than wild chimpanzees, and significant differences are present in their maxillary shapes. A large proportion of these shape differences are attributable to static allometry, but wild and captive specimens still differ significantly from each other after allometric size adjustment of the shape data. Levels of shape variation are higher in the captive group, while the degree of size variation is likely similar in our two samples. Results are discussed in the context of ontogenetic growth trajectories, changes in dietary texture, an altered social environment, and generational differences. Additionally, sample simulations show that size and shape differences between chimpanzees and bonobos (Pan paniscus) are exaggerated when part of the wild sample is replaced with captive chimpanzees. Overall, this study confirms that maxillae of captive chimpanzees should not be included in morphological or taxonomic analyses when the objective is to characterise the species.


Subject(s)
Maxilla , Pan troglodytes , Animals , Pan troglodytes/anatomy & histology , Maxilla/anatomy & histology , Maxilla/diagnostic imaging , Male , Female , Animals, Wild/anatomy & histology , Tomography, X-Ray Computed , Animals, Zoo/anatomy & histology
2.
J Hum Evol ; 168: 103210, 2022 07.
Article in English | MEDLINE | ID: mdl-35617847

ABSTRACT

Differences in morphology among modern humans and African apes are frequently used when assessing whether hominin fossils should be attributed to a single species or represent evidence for taxic diversity. A good understanding of the degree and structure of the intergeneric, interspecific, and intraspecific variation, including aspects such as sexual dimorphism and age, are key in this context. Here we explore the variation and differences shown by the maxilla of extant hominines, as maxillary morphology is central in the diagnosis of several hominin taxa. Our sample includes adults of all currently recognized hominine species and subspecies, with a balanced species sex ratio. In addition, we compared the adults with a small sample of late juveniles. The morphology of the maxillae was captured using three-dimensional landmarks, and the size and shape were analyzed using geometric morphometric methods. Key observations are that 1) the maxillae of all extant hominine species and subspecies show statistically significant differences, but complete separation in shape is only seen at the genus level; 2) the degree of variation is not consistent between genera, with subspecies of Gorilla being more different from each other than are species of Pan; 3) the pattern of sexual shape dimorphism is different in Pan, Gorilla, and Homo, often showing opposite trends; and 4) differentiation between maxillary shapes is increased after adjustment for static intraspecific allometry. These results provide a taxonomically up-to-date comparative morphological framework to help interpret the hominin fossil record, and we discuss the practical implications in that context.


Subject(s)
Hominidae , Animals , Fossils , Gorilla gorilla/anatomy & histology , Hominidae/anatomy & histology , Humans , Maxilla/anatomy & histology , Sex Characteristics
3.
Am J Phys Anthropol ; 166(2): 276-295, 2018 06.
Article in English | MEDLINE | ID: mdl-29417989

ABSTRACT

OBJECTIVES: This study aims to explore the affinities of the Sima de los Huesos (SH) population in relation to Homo neanderthalensis, Arago, and early and contemporary Homo sapiens. By characterizing SH intra-population variation, we test current models to explain the Neanderthal origins. MATERIALS AND METHODS: Three-dimensional reconstructions of dentine surfaces of lower first and second molars were produced by micro-computed tomography. Landmarks and sliding semilandmarks were subjected to generalized Procrustes analysis and principal components analysis. RESULTS: SH is often similar in shape to Neanderthals, and both groups are generally discernible from Homo sapiens. For example, the crown height of SH and Neanderthals is lower than for modern humans. Differences in the presence of a mid-trigonid crest are also observed, with contemporary Homo sapiens usually lacking this feature. Although SH and Neanderthals show strong affinities, they can be discriminated based on certain traits. SH individuals are characterized by a lower intra-population variability, and show a derived dental reduction in lower second molars compared to Neanderthals. SH also differs in morphological features from specimens that are often classified as Homo heidelbergensis, such as a lower crown height and less pronounced mid-trigonid crest in the Arago fossils. DISCUSSION: Our results are compatible with the idea that multiple evolutionary lineages or populations coexisted in Europe during the Middle Pleistocene, with the SH paradigm phylogenetically closer to Homo neanderthalensis. Further research could support the possibility of SH as a separate taxon. Alternatively, SH could be a subspecies of Neanderthals, with the variability of this clade being remarkably higher than previously thought.


Subject(s)
Biological Evolution , Dentin/anatomy & histology , Neanderthals/anatomy & histology , Animals , Anthropology, Physical , Dentin/diagnostic imaging , Humans , Imaging, Three-Dimensional , Molar/anatomy & histology , Molar/diagnostic imaging , Odontometry/methods , Principal Component Analysis , Spain , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...