Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Screen ; 19(8): 1193-200, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24980596

ABSTRACT

Recurrent genetic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) have been identified in multiple tumor types. The most frequent mutation, IDH1 R132H, is a gain-of-function mutation resulting in an enzyme-catalyzing conversion of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). A high-throughput assay quantifying consumption of NADPH by IDH1 R132H has been optimized and implemented to screen 3 million compounds in 1536-well formats. The primary high-throughput screening hits were further characterized by RapidFire-mass spectrometry measuring 2-HG directly. Multiple distinct chemotypes were identified with nanomolar potencies (6-300 nM). All inhibitors were found to be inactive against the wild-type IDH1 homodimers. An IDH1 heterodimer between wild-type and R132H mutant is capable of catalyzing conversion of α-KG to 2-HG and isocitrate to α-KG. Interestingly, one of the inhibitors, EXEL-9324, was found to inhibit both conversions by the IDH1 heterodimer. This indicates the R132H/WT heterodimer may adopt conformations distinct from that of the R132H/R132H homodimer. Further enzymatic studies support this conclusion as the heterodimer exhibited a significantly lower apparent Michaelis-Menten constant for α-KG (K(m)=110 µM) compared with the R132H homodimer (K(m)= 1200 µM). The enhanced apparent affinity for α-KG suggests R132H/WT heterodimeric IDH1 can produce 2-HG more efficiently at normal intracellular levels of α-KG (approximately 100 µM).


Subject(s)
Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , NADP/metabolism , Protein Multimerization
2.
J Med Chem ; 55(9): 4322-35, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22497444

ABSTRACT

Targeting glycosphingolipid synthesis has emerged as a novel approach for treating metabolic diseases. 32 (EXEL-0346) represents a new class of glucosylceramide synthase (GCS) inhibitors. This report details the elaboration of hit 8 with the goal of achieving and maintaining maximum GCS inhibition in vivo. 32 inhibited GCS with an IC(50) of 2 nM and achieved maximum hepatic GCS inhibition after four or five daily doses in rodents. Robust improvements in glucose tolerance in DIO mice and ZDF rats were observed after 2 weeks of q.d. dosing. Four weeks of dosing resulted in decreased plasma triglycerides and reduced hepatic fat deposition. Thus, 32 provides insight into the amount of metabolic regulation that can be restored following achievement of maximal target knockdown.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Glucosyltransferases/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Gangliosides/metabolism , Glucose Tolerance Test , Glucosyltransferases/metabolism , Humans , Liver/drug effects , Liver/enzymology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Nude , Phenylalanine/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Zucker , Structure-Activity Relationship , Triglycerides/blood
3.
Bioorg Med Chem Lett ; 21(22): 6773-7, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21974949

ABSTRACT

A novel series of potent inhibitors of glucosylceramide synthase are described. The optimization of biochemical and cellular potency as well as ADME properties led to compound 23c. Broad tissue distribution was obtained following oral administration to mice. Thus 23c could be another useful tool compound for studying the effects of GCS inhibition in vitro and in vivo.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Administration, Oral , Animals , Drug Discovery , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Mice, Inbred C57BL , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...