Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microorganisms ; 9(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34576718

ABSTRACT

Streptococcus thermophilus-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages. The phylogeny of selected phage-encoded receptor binding proteins (RBPs) was assessed, indicating that in certain cases RBP-encoding genes have been acquired separately to the morphogenesis modules, thus highlighting the adaptability of these phages. This review further highlights the significant advances that have been made in defining emergent genetically diverse groups of these phages, while it additionally summarizes remaining knowledge gaps in this research area.

2.
Mol Microbiol ; 114(1): 31-45, 2020 07.
Article in English | MEDLINE | ID: mdl-32073719

ABSTRACT

Streptococcus thermophilus strain ST64987 was exposed to a member of a recently discovered group of S. thermophilus phages (the 987 phage group), generating phage-insensitive mutants, which were then characterized phenotypically and genomically. Decreased phage adsorption was observed in selected bacteriophage-insensitive mutants, and was partnered with a sedimenting phenotype and increased cell chain length or aggregation. Whole genome sequencing of several bacteriophage-insensitive mutants identified mutations located in a gene cluster presumed to be responsible for cell wall polysaccharide production in this strain. Analysis of cell surface-associated glycans by methylation and NMR spectroscopy revealed a complex branched rhamno-polysaccharide in both ST64987 and phage-insensitive mutant BIM3. In addition, a second cell wall-associated polysaccharide of ST64987, composed of hexasaccharide branched repeating units containing galactose and glucose, was absent in the cell wall of mutant BIM3. Genetic complementation of three phage-resistant mutants was shown to restore the carbohydrate and phage resistance profiles of the wild-type strain, establishing the role of this gene cluster in cell wall polysaccharide production and phage adsorption and, thus, infection.


Subject(s)
Cell Wall/chemistry , Polysaccharides, Bacterial/genetics , Streptococcus Phages/metabolism , Streptococcus thermophilus/virology , Virus Attachment , DNA, Bacterial/genetics , Genetic Complementation Test , Genome, Bacterial/genetics , Multigene Family/genetics , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Streptococcus thermophilus/genetics , Whole Genome Sequencing
3.
Appl Environ Microbiol ; 84(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29180373

ABSTRACT

Predation of starter lactic acid bacteria such as Streptococcus thermophilus by bacteriophages is a persistent and costly problem in the dairy industry. CRISPR-mediated bacteriophage insensitive mutants (BIMs), while straightforward to generate and verify, can quickly be overcome by mutant phages. The aim of this study was to develop a tool allowing the generation of derivatives of commercial S. thermophilus strains which are resistant to phage attack through a non-CRISPR-mediated mechanism, with the objective of generating BIMs exhibiting stable resistance against a range of isolated lytic S. thermophilus phages. To achieve this, standard BIM generation was complemented by the use of the wild-type (WT) strain which had been transformed with an antisense mRNA-generating plasmid (targeting a crucial CRISPR-associated [cas] gene) in order to facilitate the generation of non-CRISPR-mediated BIMs. Phage sensitivity assays suggest that non-CRISPR-mediated BIMs exhibit some advantages compared to CRISPR-mediated BIMs derived from the same strain.IMPORTANCE The outlined approach reveals the presence of a powerful host-imposed barrier for phage infection in S. thermophilus Considering the detrimental economic consequences of phage infection in the dairy processing environment, the developed methodology has widespread applications, particularly where other methods may not be practical or effective in obtaining robust, phage-tolerant S. thermophilus starter strains.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , RNA Interference , Streptococcus Phages/genetics , Streptococcus thermophilus/virology , DNA, Bacterial/genetics , DNA, Intergenic , Mutation , RNA, Antisense , Streptococcus thermophilus/genetics
4.
J Dairy Sci ; 101(1): 96-105, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29103710

ABSTRACT

In the current study, we characterized 137 Lactococcus lactis bacteriophages that had been isolated between 1997 and 2012 from whey samples obtained from industrial facilities located in 16 countries. Multiplex PCR grouping of these 137 phage isolates revealed that the majority (61.31%) belonged to the 936 group, with the remainder belonging to the P335 and c2 groups (23.36 and 15.33%, respectively). Restriction profile analysis of phage genomic DNA indicated a high degree of genetic diversity within this phage collection. Furthermore, based on a host-range survey of the phage collection using 113 dairy starter strains, we showed that the c2-group isolates exhibited a broader host range than isolates of the 936 and P335 groups.


Subject(s)
Bacteriophages/isolation & purification , Bacteriophages/physiology , Biodiversity , Lactococcus lactis/virology , Whey/virology , Animals , Bacteriophages/classification , Bacteriophages/genetics , Cattle , Genetic Variation , Phylogeny
5.
Front Microbiol ; 8: 1754, 2017.
Article in English | MEDLINE | ID: mdl-28955321

ABSTRACT

Despite the persistent and costly problem caused by (bacterio)phage predation of Streptococcus thermophilus in dairy plants, DNA sequence information relating to these phages remains limited. Genome sequencing is necessary to better understand the diversity and proliferative strategies of virulent phages. In this report, whole genome sequences of 40 distinct bacteriophages infecting S. thermophilus were analyzed for general characteristics, genomic structure and novel features. The bacteriophage genomes display a high degree of conservation within defined groupings, particularly across the structural modules. Supporting this observation, four novel members of a recently discovered third group of S. thermophilus phages (termed the 5093 group) were found to be conserved relative to both phage 5093 and to each other. Replication modules of S. thermophilus phages generally fall within two main groups, while such phage genomes typically encode one putative transcriptional regulator. Such features are indicative of widespread functional synteny across genetically distinct phage groups. Phage genomes also display nucleotide divergence between groups, and between individual phages of the same group (within replication modules and at the 3' end of the lysis module)-through various insertions and/or deletions. A previously described multiplex PCR phage detection system was updated to reflect current knowledge on S. thermophilus phages. Furthermore, the structural protein complement as well as the antireceptor (responsible for the initial attachment of the phage to the host cell) of a representative of the 5093 group was defined. Our data more than triples the currently available genomic information on S. thermophilus phages, being of significant value to the dairy industry, where genetic knowledge of lytic phages is crucial for phage detection and monitoring purposes. In particular, the updated PCR detection methodology for S. thermophilus phages is highly useful in monitoring particular phage group(s) present in a given whey sample. Studies of this nature therefore not only provide information on the prevalence and associated threat of known S. thermophilus phages, but may also uncover newly emerging and genomically distinct phages infecting this dairy starter bacterium.

6.
Front Microbiol ; 8: 1343, 2017.
Article in English | MEDLINE | ID: mdl-28769907

ABSTRACT

Most analyzed Lactococcus lactis strains are predicted to harbor one or more prophage genomes within their chromosome; however, the true extent of the inducibility and functionality of such prophages cannot easily be deduced from sequence analysis alone. Chemical treatment of lysogenic strains with Mitomycin C is known to cause induction of temperate phages, though it is not always easy to clearly identify a lysogenic strain or to measure the number of released phage particles. Here, we report the application of flow cytometry as a reliable tool for the detection and enumeration of released lactococcal prophages using the green dye SYTO-9.

7.
BMC Genomics ; 18(1): 146, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28183268

ABSTRACT

BACKGROUND: Despite continuous research efforts, bacterio(phages) infecting Lactococcus lactis starter strains persist as a major threat to dairy fermentations. The lactococcal P335 phages, which are currently classified into four sub-groups (I-IV), are the second most frequently isolated phage group in an industrial dairy context. RESULTS: The current work describes the isolation and comparative genomic analysis of 17 novel P335 group phages. Detailed analysis of the genomic region of P335 phages encoding the so-called "baseplate", which includes the receptor binding protein (RBP) was combined with a functional characterization of the RBP of sub-group III and IV phages. Additionally, calcium-dependence assays revealed a specific requirement for calcium by sub-group IV phages while host range analysis highlighted a higher number of strains with CWPS type A (11 of 39 strains) are infected by the P335 phages assessed in this study than those with a C (five strains), B (three of 39 strains) or unknown (one of 39 strains) CWPS type. CONCLUSIONS: These analyses revealed significant divergence among RBP sequences, apparently reflecting their unique interactions with the host and particularly for strains with a type A CWPS. The implications of the genomic architecture of lactococcal P335 phages on serving as a general model for Siphoviridae phages are discussed.


Subject(s)
Bacteriophages/genetics , Bacteriophages/physiology , Lactococcus lactis/virology , Bacteriophages/metabolism , Calcium/metabolism , Genetic Variation , Genomics , Host Specificity/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
8.
Genome Announc ; 4(6)2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27834693

ABSTRACT

P335 group phages represent the most divergent phage group infecting dairy Lactococcus lactis strains and have significant implications for the dairy processing industry. Here, we report the complete genome sequences of eight lactococcal prophages chemically induced from industrial lactococcal strains that propagate lytically on one of two laboratory strains.

9.
Appl Environ Microbiol ; 82(17): 5153-65, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27316953

ABSTRACT

UNLABELLED: We present the complete genome sequences of four members of a novel group of phages infecting Streptococcus thermophilus, designated here as the 987 group. Members of this phage group appear to have resulted from genetic exchange events, as evidenced by their "hybrid" genomic architecture, exhibiting DNA sequence relatedness to the morphogenesis modules of certain P335 group Lactococcus lactis phages and to the replication modules of S. thermophilus phages. All four identified members of the 987 phage group were shown to elicit adsorption affinity to both their cognate S. thermophilus hosts and a particular L. lactis starter strain. The receptor binding protein of one of these phages (as a representative of this novel group) was defined using an adsorption inhibition assay. The emergence of a novel phage group infecting S. thermophilus highlights the continuous need for phage monitoring and development of new phage control measures. IMPORTANCE: Phage predation of S. thermophilus is an important issue for the dairy industry, where viral contamination can lead to fermentation inefficiency or complete fermentation failure. Genome information and phage-host interaction studies of S. thermophilus phages, particularly those emerging in the marketplace, are an important part of limiting the detrimental impact of these viruses in the dairy environment.


Subject(s)
Bacteriophages/isolation & purification , Streptococcus Phages/isolation & purification , Streptococcus thermophilus/virology , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/physiology , Lactic Acid/metabolism , Streptococcus Phages/classification , Streptococcus Phages/genetics , Streptococcus Phages/physiology , Streptococcus thermophilus/metabolism
10.
Blood ; 106(12): 3691-8, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16105973

ABSTRACT

The focal location of atherosclerosis in the vascular tree is correlated with local variations in shear stress. We developed a method to induce defined variations in shear stress in a straight vessel segment of a mouse. To this end, a cylinder with a tapered lumen was placed around the carotid artery, inducing a high shear stress field. Concomitantly, regions of low shear stress and oscillatory shear stress were created upstream and down-stream of the device, respectively. This device was used in mice transgenic for an eNOS3GFP fusion gene. We observed a strong induction of endothelial nitric oxide synthase-green fluorescent protein (eNOS-GFP) mRNA expression in the high shear stress region compared with the other regions (P < .05). Quantification of eNOS-GFP fluorescence or of immunoreactivity to the Golgi complex or to platelet endothelial cell adhesion molecule 1 (PECAM-1) showed an increase in the high shear stress region (P < .05) compared with nontreated carotid arteries. Colocalization of eNOS-GFP with either the Golgi complex or PECAM-1 also responded to alterations of shear stress. In conclusion, we showed a direct response of mRNA and protein expression in vivo to induced variations of shear stress. This model provides the opportunity to study the relationship between shear stress alterations, gene expression, and atherosclerosis.


Subject(s)
Carotid Arteries/enzymology , Gene Expression Regulation , Nitric Oxide Synthase Type II/metabolism , Protein Transport/physiology , Animals , Atherosclerosis/physiopathology , Golgi Apparatus/metabolism , Green Fluorescent Proteins , Immunohistochemistry , Mice , Mice, Transgenic , Microscopy, Confocal , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type III , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Polymerase Chain Reaction , RNA, Messenger/analysis , Rabbits , Shear Strength , Stress, Mechanical , Ultrasonography, Doppler, Color
SELECTION OF CITATIONS
SEARCH DETAIL
...