Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 6(5): 1, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28875063

ABSTRACT

PURPOSE: Biofilm formation is a problem for solid and sponge-type scleral buckles. This can lead to complications that require removal of the buckle, and result in vision loss due to related ocular morbidity, primarily infection, or recurrent retinal detachment. We investigate the ability of a covalent organo-selenium coating to inhibit biofilm formation on a scleral buckle. METHODS: Sponge and solid Labtican brand scleral buckles were coated with organo-selenium coupled to a silyation reagent. Staphylococcus aureus biofilm formation was monitored by a standard colony-forming unit assay and the confocal laser scanning microscopy, while Pseudomonas aeruginosa biofilm formation was examined by scanning electron microscopy. Stability studies were done, by soaking in phosphate buffer saline (PBS) at room temperature for 2 months. Toxicity against human corneal epithelial cell was examined by growing the cells in the presence of organo-selenium-coated scleral buckles. RESULTS: The organo-selenium coating inhibited biofilm formation by gram-negative and gram-positive bacteria. The buckle coatings also were shown to be fully active after soaking in PBS for 2 months. The organo-selenium coatings had no effect on the viability of human corneal epithelial cells. CONCLUSIONS: Organo-selenium can be used to covalently coat a scleral buckle, which is stable and inhibits biofilm formation for gram-negative and gram-positive bacteria. The organo-selenium buckle coating was stable and nontoxic to cell culture. TRANSLATIONAL RELEVANCE: This technology provides a means to inhibit bacterial attachment to devices attached to the eye, without damage to ocular cells.

2.
Eye Contact Lens ; 43(2): 110-115, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26974534

ABSTRACT

OBJECTIVES: Contact lens-acquired bacterial infections are a serious problem. Of the reported cases, inadequate cleaning of the lens case was the most common cause of lens contamination. Organoselenium has been shown to inhibit bacterial attachment to different polymer materials. This study evaluates the ability of an organoselenium monomer, incorporated into the polymer of a polypropylene contact lens case coupon, to block the formation of biofilms in a lens case. METHODS: The bacteria tested were Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia, and Serratia marcescens. For this study, the bacteria were allowed to grow overnight, in trypticase soy broth media, in the presence of the selenium-containing polymer or the same polymer without organoselenium. The material was studied by both colony-forming unit determination and by confocal laser scanning microscopy. RESULTS: The results showed that the organoselenium polymer versus the control polymer resulted in the following effect on biofilm formation: (1) a reduction in P. aeruginosa of 7.3 logs (100%); (2) a reduction in S. aureus of 7.3 logs (100%); (3) a reduction in S. maltophilia of 7.5 logs (100%); and (4) a reduction in S. marcescens reduction of 3.3 logs (99.9%). To test the stability of the organoselenium polypropylene contact lens coupon, the coupon was soaked in PBS for eight weeks at room temperature. It was found that when these soaked coupons were tested against S. aureus, complete inhibition (8.1 logs) was obtained. Because organoselenium cannot leach from the polymer, this would imply that the organoselenium polypropylene contact lens case coupon would be inhibitory toward bacterial biofilm for the life of the case. CONCLUSION: The organoselenium polypropylene contact lens case coupon shows the ability to inhibit biofilm formation. The use of organoselenium copolymer should play an important role in protecting against contact lens case-acquired infection.


Subject(s)
Biofilms/drug effects , Contact Lenses/microbiology , Equipment Contamination/prevention & control , Organoselenium Compounds/pharmacology , Contact Lens Solutions/pharmacology , Eye Infections, Bacterial/prevention & control , Humans , Organoselenium Compounds/chemistry , Polypropylenes/chemistry , Pseudomonas aeruginosa/drug effects , Serratia marcescens/drug effects , Staphylococcus aureus/drug effects , Stenotrophomonas maltophilia/drug effects
3.
JAMA Otolaryngol Head Neck Surg ; 139(10): 1009-16, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24030785

ABSTRACT

IMPORTANCE: Tube occlusion and post-tympanostomy tube otorrhea (PTTO) are 2 major sequelae of tympanostomy tube placement. Plugging negates the function of the tympanostomy tubes and, along with chronic PTTO, can be financially burdensome owing to repeated surgical procedures and additional treatments. OBJECTIVE: To investigate the effectiveness of an organoselenium (OSe) coating on Donaldson tympanostomy tubes in inhibiting biofilm formation on the tympanostomy tubes. DESIGN: In vitro microbiologic study; all experiments were performed in a Texas Tech University Health Sciences Center basic sciences laboratory. INTERVENTIONS: Inhibition of biofilm formation was investigated by incubating OSe-coated vs uncoated (control) tympanostomy tubes in a nutrient broth containing either Staphylococcus aureus (Sa) expressing green fluorescent protein (GFP), nontypeable Haemophilus influenzae (NTHi) expressing GFP, or Moraxella catarrhalis (Mc) for 48 hours at 37 °C. All biofilms were quantified via colony-forming unit (CFU) assays. The Sa and NTHi biofilms were visualized using confocal laser-scanning microscopy (CLSM) and analyzed using the COMSTAT program. MAIN OUTCOMES AND MEASURES: The CFU assays, CLSM, and COMSTAT analysis revealed that compared with uncoated control tympanostomy tubes, OSe-coated tympanostomy tubes are able to inhibit Sa, NTHi, and Mc biofilm formation. RESULTS: The Sa and NTHi developed thick mature biofilms containing considerable biomass on uncoated tympanostomy tubes as determined by CLSM and COMSTAT analysis, while the OSe coating on the tympanostomy tubes drastically inhibited biofilm formation by Sa and NTHi. Quantitative CFU analysis revealed that this reduction in biofilm formation was significant, 6 logs for Sa (P < .001) and 4 logs for NTHi (P = .02). OSe coating also inhibited biofilm formation by Mc with a 4.5-log reduction (P < .001). CONCLUSIONS AND RELEVANCE: The OSe coating is a potential long-lasting agent to prevent biofilm development on tympanostomy tubes by otopathogens.


Subject(s)
Biofilms/drug effects , Haemophilus influenzae/drug effects , Middle Ear Ventilation/instrumentation , Moraxella catarrhalis/drug effects , Organoselenium Compounds/pharmacology , Staphylococcus aureus/drug effects , Bacterial Adhesion/drug effects , Bacterial Adhesion/physiology , Biofilms/growth & development , Coated Materials, Biocompatible/pharmacology , Equipment Contamination/prevention & control , Haemophilus influenzae/growth & development , Moraxella catarrhalis/growth & development , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...