Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 11(517)2019 11 06.
Article in English | MEDLINE | ID: mdl-31694927

ABSTRACT

Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/pathology , Lab-On-A-Chip Devices , Liver/pathology , Animals , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/pathology , Dogs , Humans , Kupffer Cells/metabolism , Liver/injuries , Liver Diseases/pathology , Phenotype , Rats , Reproducibility of Results , Risk Factors , Species Specificity
2.
Drug Metab Dispos ; 37(6): 1259-68, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19307295

ABSTRACT

Prototypic CYP3A4 inducers were tested in a pregnane X receptor (PXR) reporter gene assay, Fa2N-4 cells, HepaRG cells, and primary human hepatocytes, along with negative controls, using CYP3A4 mRNA and activity endpoints, where appropriate. Over half of the compounds tested (14 of 24) were identified as time-dependent inhibitors of CYP3A4 and high mRNA/activity ratios (>10) were consistent with CYP3A4 time-dependent inhibition for compounds such as troleandomycin, ritonavir, and verapamil. Induction response was compared between two human donors; there was an excellent correlation in the EC(50) estimates (r(2) = 0.89, p < 0.001), and a weak but statistically significant correlation was noted for maximum observed induction at an optimum concentration (E(max)) (r(2) = 0.38, p = 0.001). E(max) and EC(50) estimates determined from the PXR reporter gene assay and Fa2N-4 and HepaRG cells were compared with those from hepatocytes. Overall, EC(50) values generated using hepatocytes agreed with those generated in the PXR reporter gene assay (r(2) = 0.85, p < 0.001) and Fa2N-4 (r(2) = 0.65, p < 0.001) and HepaRG (r(2) = 0.99, p < 0.001) cells. However, E(max) values generated in hepatocytes were only significantly correlated to those determined in Fa2N-4 (r(2) = 0.33, p = 0.005) and HepaRG cells (r(2) = 0.79, p < 0.001). "Gold standard" cytochrome P450 induction data can be generated using primary human hepatocytes, but a restricted, erratic supply and interdonor variability somewhat restrict routine application within a drug discovery setting. HepaRG cells are a valuable recent addition to the armory of in vitro tools for assessing CYP3A4 induction and seem to be an excellent surrogate of primary cells.


Subject(s)
Cytochrome P-450 CYP3A/biosynthesis , Drug Evaluation, Preclinical , Drug Interactions , Cells, Cultured , Drug Design , Enzyme Induction/drug effects , Hepatocytes/metabolism , Humans , Pharmaceutical Preparations , Pregnane X Receptor , Receptors, Steroid/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...