Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 12(1): 1713648, 2020.
Article in English | MEDLINE | ID: mdl-31928294

ABSTRACT

LINGO-1 is a membrane protein of the central nervous system (CNS) that suppresses myelination of axons. Preclinical studies have revealed that blockade of LINGO-1 function leads to CNS repair in demyelinating animal models. The anti-LINGO-1 antibody Li81 (opicinumab), which blocks LINGO-1 function and shows robust remyelinating activity in animal models, is currently being investigated in a Phase 2 clinical trial as a potential treatment for individuals with relapsing forms of multiple sclerosis (AFFINITY: clinical trial.gov number NCT03222973). Li81 has the unusual feature that it contains two LINGO-1 binding sites: a classical site utilizing its complementarity-determining regions and a cryptic secondary site involving Li81 light chain framework residues that recruits a second LINGO-1 molecule only after engagement of the primary binding site. Concurrent binding at both sites leads to formation of a 2:2 complex of LINGO-1 with the Li81 antigen-binding fragment, and higher order complexes with intact Li81 antibody. To elucidate the role of the secondary binding site, we designed a series of Li81 variant constructs that eliminate it while retaining the classic site contacts. These Li81 mutants retained the high affinity binding to LINGO-1, but lost the antibody-induced oligodendrocyte progenitor cell (OPC) differentiation activity and myelination activity in OPC- dorsal root ganglion neuron cocultures seen with Li81. The mutations also attenuate antibody-induced internalization of LINGO-1 on cultured cortical neurons, OPCs, and cells over-expressing LINGO-1. Together these studies reveal that engagement at both LINGO-1 binding sites of Li81 is critical for robust functional activity of the antibody.


Subject(s)
Antibodies, Monoclonal/immunology , Binding Sites, Antibody/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/immunology , Humans
2.
Methods ; 65(1): 68-76, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23816785

ABSTRACT

Antibodies are key components of the adaptive immune system and are well-established protein therapeutic agents. Typically high-affinity antibodies are obtained by immunization of rodent species that need to be humanized to reduce their immunogenicity. The complementarity-determining regions (CDRs) contain the residues in a defined loop structure that confer antigen binding, which must be retained in the humanized antibody. To design a humanized antibody, we graft the mature murine CDRs onto a germline human acceptor framework. Structural defects due to mismatches at the graft interface can be fixed by mutating some framework residues to murine, or by mutating some residues on the CDRs' backside to human or to a de novo designed sequence. The first approach, framework redesign, can yield an antibody with binding better than the CDR graft and one equivalent to the mature murine, and reduced immunogenicity. The second approach, CDR redesign, is presented here as a new approach, yielding an antibody with binding better than the CDR graft, and immunogenicity potentially less than that from framework redesign. Application of both approaches to the humanization of anti-α4 integrin antibody HP1/2 is presented and the concept of the hybrid humanization approach that retains "difficult to match" murine framework amino acids and uses de novo CDR design to minimize murine amino acid content and reduce cell-mediated cytotoxicity liabilities is discussed.


Subject(s)
Antibodies, Monoclonal, Humanized/biosynthesis , Complementarity Determining Regions/biosynthesis , Immunoglobulin Fab Fragments/biosynthesis , Amino Acid Sequence , Amino Acid Substitution , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antibody Affinity , Binding Sites , Cloning, Molecular , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Hybridomas , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Jurkat Cells , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed
3.
Methods Mol Biol ; 899: 127-44, 2012.
Article in English | MEDLINE | ID: mdl-22735950

ABSTRACT

Proteins, especially antibodies, are widely used as therapeutic and diagnostic agents. Computational protein design is a powerful tool for improving the affinity and stability of these molecules. We describe a protein design method which employs the dead-end elimination (DEE) and A* discrete search algorithms with a few improvements aimed at making the procedure more useful for actual projects to design proteins for better affinity or stability. DEE/A* and related algorithms allow vast search spaces of protein sequences and their alternative side chain conformations ("rotamers") to be systematically explored, to find those with the best free energy of folding or binding. To maximize a protein design project's chance of success, it needs to find a diverse set of sequences to experimentally synthesize. It should also find structures that score well, not only on the pairwise-additive energy function which DEE/A* and related search algorithms must use, but also on a post-search energy function with accurate treatment of solvation effects. Straight DEE/A*, however, typically finds vast numbers of very similar low-energy conformations, making it infeasible to find a diverse set of sequences or conformations. Herein, we describe a three-level DEE/A* procedure that uses DEE/A* at the level of sequences, at the level of rotamers, and at an intermediate "fleximer" level, to ensure a wide variety of sequences as well as a diverse set of conformations for each sequence.A physics-based method is also described herein for calculating the free energy of folding based on a thermodynamic cycle with a model of the unfolded state. The free energies of both folding and binding may be used for the final evaluation of the designed structures. For example, when designing for improved affinity (binding), we can also ensure that stability is not degraded by screening on the free energy of folding.


Subject(s)
Algorithms , Computational Biology/methods , Models, Molecular , Protein Engineering/methods , Proteins/chemistry , Computer Simulation , Humans , Monte Carlo Method , Protein Folding , Protein Stability , Software , Static Electricity
4.
Protein Sci ; 15(5): 949-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16597831

ABSTRACT

Improving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.8 A) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high-affinity quadruple mutant complex at 2.2 A. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single-mutant success rate. Our results indicate that structure-based computational design can be successfully applied to further improve the binding of high-affinity antibodies.


Subject(s)
Antibodies/therapeutic use , Antibody Affinity , Binding Sites, Antibody , Computer-Aided Design , Drug Design , Amino Acid Substitution , Antigen-Antibody Complex/chemistry , Crystallography, X-Ray , Immunoglobulins , Integrin alpha1beta1/immunology , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...