Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nano Lett ; 21(12): 5028-5035, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34082532

ABSTRACT

Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch electrons from following the driving field coherently. The two-level model also shows that Floquet-Bloch states reappear at high field intensities where energy exchange with the driving field dominates over energy dissipation to the bath. Our results clearly indicate the importance of long scattering times combined with strong driving fields for the successful realization of various Floquet phenomena.


Subject(s)
Electrons
2.
Nat Commun ; 11(1): 1247, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32144243

ABSTRACT

Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.

3.
Sci Rep ; 6: 35087, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731408

ABSTRACT

Time-resolved hard X-ray photoelectron spectroscopy (trHAXPES) using microfocused X-ray free-electron laser (XFEL, hν = 8 keV) pulses as a probe and infrared laser pulses (hν = 1.55 eV) as a pump is employed to determine intrinsic charge-carrier recombination dynamics in La:SrTiO3. By means of a combination of experiments and numerical N-body simulations, we first develop a simple approach to characterize and decrease XFEL-induced vacuum space-charge effects, which otherwise pose a serious limitation to spectroscopy experiments. We then show that, using an analytical mean-field model, vacuum space-charge effects can be counteracted by pump laser-induced photoholes at high excitation densities. This provides us a method to separate vacuum space-charge effects from the intrinsic charge-carrier recombination dynamics in the time domain. Our trHAXPES results thus open a route to studies of intrinsic charge-carrier dynamics on picosecond time scales with lateral spatial resolution on the micrometer scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...