Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 299: 120133, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876771

ABSTRACT

In this study, metalloanthocyanin-inspired, biodegradable packaging films were developed by incorporating purple cauliflower extracted (PCE) anthocyanins into alginate (AL)/carboxymethyl chitosan (CCS) hybrid polymer matrices based on complexation of metal ions with these marine polysaccharides and anthocyanins. PCE anthocyanins-incorporated AL/CCS films were further modified with fucoidan (FD) because this sulfated polysaccharide can form strong interactions with anthocyanins. Metals-involved complexation (Ca2+ and Zn2+-crosslinked films) improved the mechanical strength and water vapor permeability but reduced the swelling degree of the films. Zn2+-cross-linked films exhibited significantly higher antibacterial activity than did pristine (non-crosslinked) and Ca2+-cross-linked films. The metal ion/polysaccharide-involved complexation with anthocyanin reduced the release rate of anthocyanins, increased the storage stability and antioxidant capability, and improved the sensitivity of the colorimetric response of the indicator films for monitoring the freshness of shrimp. The anthocyanin-metal-polysaccharide complex film showed great potential as active and intelligent packaging of food products.


Subject(s)
Coordination Complexes , Food Packaging , Anthocyanins , Polysaccharides , Alginates , Plant Extracts
2.
Carbohydr Polym ; 254: 117410, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357896

ABSTRACT

Active and intelligent packaging films with multiple functions including antioxidant, antibacterial and colorimetric pH indicator properties were developed by incorporating Clitoria ternatea (CT) extract into gellan gum (G) film. G enhanced the stability of CT anthocyanins and allowed the anthocyanins to release from G film in a pH-responsive behavior. Heat-treated soy protein isolate (HSPI) was able to interact with G and CT anthocyanins through the formation of electrostatic forces and covalent bonds. G film blended with HSPI greatly reduced the swelling capacity of G/HSPI composite film and controlled the anthocyanins release at pH greater than 6.0. The physical and mechanical properties of G films such as hydrophobicity, water vapor permeability, swelling capacity and tensile strength were also significantly modified by addition of HSPI to G films. The smart films changed their color with the increase of total volatile basic nitrogen (TVBN) values during progressive spoilage of shrimp, revealing their potential application for monitoring seafood freshness.


Subject(s)
Anthocyanins/chemistry , Clitoria/chemistry , Food Packaging/methods , Food Quality , Plant Extracts/chemistry , Polysaccharides, Bacterial/chemistry , Smart Materials/chemistry , Color , Colorimetry/methods , Hydrogen-Ion Concentration , Indicators and Reagents , Permeability , Seafood , Soybean Proteins/chemistry , Static Electricity , Steam , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...