Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(25): 11118-11127, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38864774

ABSTRACT

Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.


Subject(s)
Aerosols , Air Pollutants , Coal , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , China , Animals , Tibet , Environmental Monitoring
2.
Chemosphere ; 333: 138957, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37201604

ABSTRACT

Volatile organic compounds (VOCs) emitted from solid fuels combustion (e.g., biomass and coal) are still the dominant precursors for the formation of tropospheric ozone (O3) and secondary organic aerosols (SOAs). Limited research focused on the evolution, as known as atmospheric aging, of VOCs emitted during long-timescale observations. Here, freshly emitted and aged VOCs from common residual solid fuel combustions were collected onto absorption tubes before and after passing through an oxidation flow reactor (OFR) system, respectively. The emission factor (EF) of freshly emitted total VOCs is in descending order of corn cob ≥ corn straw > firewood ≥ wheat straw > coals. Aromatic and oxygenated VOCs (OVOCs) are the two most abundant groups, accounting for >80% of the EF of total quantified VOCs (EFTVOCs). Briquette technology shows an effective reduction of the VOC emission, demonstrating a maximum 90.7% lower EFTVOCs in comparison to that of biomass fuels. In contrast, each VOC shows significantly different degradation in comparison to EF of freshly emitted and after 6- and 12-equivalent day aging (actual atmospheric aging days calculated from aging simulation). The largest degradations after 6-equivalent days of aging are observed on alkenes in the biomass group (60.9% on average) and aromatics in the coal group (50.6% on average), consistent with their relatively high reactivities toward oxidation with O3 and hydroxyl radical. The largest degraded compound is seen for acetone, followed by acrolein, benzene, and toluene. Furthermore, the results show that the distinction of VOC species based on long-timescale (12-equivalent day aging) observation is essential to further explore the effect of regional transport. The alkanes which have relatively lower reactivities but high EFs could be accumulated through long-distance transport. These results provide detailed data on fresh and aged VOCs emitted from residential fuels which could be used to explore the atmospheric reaction mechanism.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Coal , China , Ozone/analysis
3.
Environ Res ; 212(Pt C): 113357, 2022 09.
Article in English | MEDLINE | ID: mdl-35580669

ABSTRACT

A vehicular emission study was conducted in the longest inner-city tunnel in Xi'an, northwestern China in four time periods (I: 07:30-10:30, II: 11:00-14:00, III: 16:30-19:30, and IV: 20:00-23:00 LST). A sum of 40 PAHs, including parent (p-PAHs), alkylated (a-PAHs), and oxygenated (o-PAHs) in fine particulate matter (PM2.5) were quantified. The relationships between the PAHs and the formation of reactive oxygen species (ROS) were also studied. The average total quantified PAHs concentration was 236.3 ± 48.3 ng m-3. The p-PAHs were found to be the most dominated group, accounting for an average of 88.1% of the total quantified PAHs, followed by a-PAHs (6.1%) and o-PAHs (5.8%). On the base of the number of aromatic rings, the groups of ≤5 rings (92.5 ± 1.2%) had higher fractions than the high ones (≥6 rings, 7.5 ± 1.2%) for pPAHs. Diurnal variations of PAHs subgroups exhibited the highest levels in Period III, consistent with the largest traffic counts in evening rush hours. However, less reduction of few PAHs in the night period demonstrates that the emissions of compressed natural gas (CNG) and methanol-fueled vehicles cannot be ignored while their contribution increased. High ROS activity levels were observed in the traffic-dominated samples, implying the potential oxidative damages to humans. Additionally, diurnal variation of the ROS activity was consistent with the total quantified PAHs and toxic equivalency of benzo[a]pyrene. Good correlations (R > 0.6, p < 0.05) were seen between individual groups of PAHs (especially for 3-5 rings p-PAHs, 4 rings a-PAHs, and 2-3 rings o-PAHs) and ROS activity, supporting that the vehicular emitted PAHs possibly initiate oxidative stress. The multiple linear regression analysis further illustrated that chrysene contributed the highest (25.0%) to ROS activity. In addition to highlighting the potential hazards to the PAHs from the vehicular emission, their roles to mitigate the health effects by formations of ROS were firstly reported in northwestern China.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , China , Environmental Monitoring , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Reactive Oxygen Species/analysis , Vehicle Emissions/analysis , Vehicle Emissions/toxicity
4.
Chemosphere ; 303(Pt 2): 135013, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35618050

ABSTRACT

A single particle aerosol mass spectrometer was deployed in a heavily polluted area of China during a coronavirus lockdown to explore the impact of reduced anthropogenic emissions on the chemical composition, size distributions, mixing state, and secondary formation of urban aerosols. Ten particle groups were identified using an adaptive resonance network algorithm. Increased atmospheric oxidation during the lockdown period (LP) resulted in a 42.2%-54% increase in the major NaK-SN particle fraction relative to the normal period (NP). In contrast, EC-aged particles decreased from 31.5% (NP) to 23.7% (LP), possibly due to lower emissions from motor vehicles and coal combustion. The peak particle size diameter increased from 440 nm during the NP to 500 nm during LP due to secondary particle formation. High proportions of mixed 62NO3- indicate extensive particle aging. Correlations between secondary organic (43C2H3O+, oxalate) and secondary inorganic species (62NO3-, 97HSO4- and 18NH4+) versus oxidants (Ox = O3 + NO2) and relative humidity (RH) indicate that increased atmospheric oxidation promoted the generation of secondary species, while the effects of RH were more complex. Differences between the NP and LP show that reductions in primary emissions had a remarkable impact on the aerosol particles. This study provides new insights into the effects of pollution emissions on atmospheric reactions and the specific aerosol types in urban regions.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis
5.
Environ Res ; 210: 112936, 2022 07.
Article in English | MEDLINE | ID: mdl-35181303

ABSTRACT

The implementation of air pollution control measures could alter the compositions of submicron aerosols. Identifying the changes can evaluate the atmospheric responses of the implemented control measures and provide more scientific basis for the formulation of new measures. The Fen-Wei River Basin is the most air polluted region in China, and thereby is a key area for the reduction of emissions. Only limited studies determine the changes in the chemical compositions of submicron aerosols. In this study, Baoji was selected as a representative city in the Fen-Wei River Basin. The compositions of submicron aerosols were determined between 2014 and 2019. Organic fractions were determined through an online instrument (Quadrupole Aerosol Chemical Speciation Monitor, Q-ACSM) and source recognition was performed by the Multilinear Engine (ME-2). The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was also employed to evaluate the contributions of emissions reduction and meteorological conditions to the changes of submicron aerosol compositions. The results indicate that the mass concentrations of submicron aerosols have been substantially decreased after implementation of air pollution control measures. This was mainly attributed to the emission reductions of sulfur dioxide (SO2) and primary organic aerosol (POA). In addition, the main components that drove the pollution episodes swapped from POA, sulfate, nitrate and less-oxidized organic (LO-OOA) in 2014 to nitrate and more-oxidized OOA (MO-OOA) in 2019. Due to the changes of chemical compositions of both precursors and secondary pollutants, the pollution control measures should be modernized to focus on the emissions of ammonia (NH3), nitrogen oxides (NOx) and volatile organic compounds (VOCs) in this region.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , China , Environmental Monitoring/methods , Nitrates , Nitrogen Oxides/analysis , Particulate Matter/analysis , Rivers
6.
Environ Pollut ; 299: 118866, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35077839

ABSTRACT

Residential coal combustion is a prominent source of brown carbon (BrC) aerosols, but knowledge of their molecular structures and optical absorption were limited, which have notable used in ambient BrC source identification and radiative forcing calculation. In this study, the Fourier transform-ion cyclotron resonance mass spectrometry combined with partial least squares regression analysis as well as Fourier transform infrared spectroscopy analysis were used to insight the molecular compounds and structures of BrC from anthracite and bituminous coal combustions between traditional and improved stoves. The absorption Ångström exponents (AAE) and mass absorption efficiency (MAE) values for the BrC emitted from the combinations of bituminous were both 1.2-2.5 times lower than those of anthracite, interpreting that the BrC from the anthracite emissions had greater light-absorbing capacity. In contrast, the emission factor of light absorption (EFAbs) at 365 nm for the bituminous coal combusted in the traditional stove was the highest among all the tested scenarios, which revealed that the incomplete combustion of bituminous coal could emit more BrC. It was noted that primary BrC emitted from the coal combustion with traditional stoves contains higher aromaticity groups of C-C and C=O and higher S containing organics, whereas more aliphatic groups were found in BrC using the improved stoves. N-containing (CHON and CHONS) compounds were dominated in the total molecular formula of BrC, whereas the sum of CHON and CHO groups had high double-bond equivalent (DBE) values contributed 53.5%-87.1% to the total BrC absorption. Moreover, for CHOS, the lowest of estimated molecular absorption, DBE, and DBE/C should attribute to the non-chromophoric or weak absorptive S-containing compounds. This study supplied an effective evaluation method to compare BrC emissions and their absorption for coal combustion on regional scale.


Subject(s)
Air Pollutants , Coal , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Coal/analysis , Environmental Monitoring , Molecular Structure , Particulate Matter/analysis
7.
Environ Pollut ; 293: 118544, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34801622

ABSTRACT

It is enlightening to determine the discrepancies and potential reasons for the degree of impact from the COVID-19 control measures on air quality as well as the associated health and economic impacts. Analysis of air quality, socio-economic factors, and meteorological data from 447 cities in 46 countries indicated that the COVID-19 control measures had significant impacts on the PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) concentrations in 20 (reduced PM2.5 concentrations of -7.4-29.1 µg m-3) of the selected 46 countries. In these 20 countries, the robustly distinguished changes in the PM2.5 concentrations caused by the control measures differed between the developed (95% confidence interval (CI): -2.7-5.5 µg m-3) and developing countries (95% CI: 8.3-23.2 µg m-3). As a result, the COVID-19 lockdown reduced death and hospital admissions change from the decreased PM2.5 concentrations by 7909 and 82,025 cases in the 12 developing countries, and by 78 and 1214 cases in the eight developed countries. The COVID-19 lockdown reduced the economic cost from the PM2.5 related health burden by 54.0 million dollars in the 12 developing countries and by 8.3 million dollars in the eight developed countries. The disparity was related to the different chemical compositions of PM2.5. In particular, the concentrations of primary PM2.5 (e.g., BC) in cities of developing countries were 3-45 times higher than those in developed countries, so the mass concentration of PM2.5 was more sensitive to the reduced local emissions in developing countries during the COVID-19 control period. The mass fractions of secondary PM2.5 in developed countries were generally higher than those in developing countries. As a result, these countries were more sensitive to the secondary atmospheric processing that may have been enhanced due to reduced local emissions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Developing Countries , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
8.
Environ Pollut ; 286: 117573, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34438495

ABSTRACT

Solid fuel is a the most dominant energy source for household usages in developing countries. In this study, emission characteristics on organic carbon (OC), elemental carbon (EC) and fifty-two polycyclic aromatic hydrocarbons (PAHs) in gaseous and particulate phases from seven fuel-stove combinations were studied in a typical rural village in northwest China. For the PAHs, the highest gaseous and particulate phase emission factors (EFs) were both observed for bituminous coal with one-stage stoves, ranging from 459 ± 154 to 1.09 ± 0.36 × 103 mg kg-1. In contrast, the PAHs EFs for the clean briquette coal with two-stage stoves were two orders of magnitude lower than those of the bituminous coals. For parent PAHs (pPAHs) and total quantified PAHs (∑PAHs), they mainly contributed in gaseous phases with compositions of 69-79% and 64-70%, respectively. The gas-to-particle partitioning was mostly governed by the absorption. Moreover, the correlation coefficient (r) between EC and ∑PAHs, OC and parent PAHs (pPAHs), OC and nitro PAHs (nPAHs) were 0.81, 0.67 and 0.85, respectively, supporting that the PAHs species were potential precursors to the EC formation during the solid fuel combustion. The correlation analyses in this study further deduced that the formations of pPAHs and nPAHs were more closely related to that of OC than alkylated PAHs (aPAHs) and oxygenated PAHs (oPAHs). Diagnostic ratios of selective PAHs were calculated and evaluated as well. Among those, the ratio of retene (RET)/[RET + chyrene (CHR)] was found to be an efficient tool to distinguish coal combustion and biomass burning. In general, it was found that the amounts of pollutant emissions from clean briquette coal combustion were definitely lower than those from bituminous coal and biomass combustions. It is thus necessary to introduce and recommend the use of cleaner briquette coal as energy source.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , China , Coal/analysis , Environmental Monitoring , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis
9.
Environ Pollut ; 268(Pt A): 115881, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120337

ABSTRACT

To characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from residential biomass burning and coal combustion in field environments, smoke samples were collected from the combustion of six types of biomass in heated kangs and four types of coal in traditional stoves and semi-gasifier stoves. The emission factors (EFs) of the total PAH were in the range of 84.5-344 mg/kg for biomass burning, with lower EFs for biomass with higher densities, and in the range of 38.0-206 mg/kg for coal combustion, with lower EFs for coals with higher maturity. Moreover, EFs were lower from high-density biomass fuels (wood trunk, 84.5 ± 11.3 mg/kg) than low-maturity coals (bituminous coal, 206 ± 16.5 mg/kg). Parent, oxygenated, alkylated, and nitrated PAHs accounted for 81.1%, 12.6%, 6.2%, and 0.1%, respectively, of the total-PAH EFs from biomass burning, and 84.7%, 13.8%, 1.4%, and 0.1%, respectively, of the total-PAH EFs from coal combustion. PAH source profiles differed negligibly between biomass fuels but differed significantly between bituminous coal and anthracite coal fuels. The characteristic species of sources were phenanthrene, 9-fluorenone, and 2-nitrobiphenyl for biomass burning, and were phenanthrene, benzo[ghi]perylene, 1,4-naphthoquinone, and 2-nitrobiphenyl for coal combustion. The ratios of benzo[b]fluoranthene/(benzo[b]fluoranthene + benzo[k]fluoranthene) were 0.40-0.45 for biomass burning and 0.89-0.91 for coal combustion, and these significantly different values constitute unique markers for distinguishing these fuels in source apportionment. Benzo[a]pyrene-equivalent factor emissions were 2.79-11.3 mg/kg for biomass and 7.49-41.9 mg/kg for coal, where parent PAHs contributed 92.0%-95.1% from biomass burning and 98.6%-98.8% from coal combustion. Total-PAH emissions from residential heating were 1552 t across Shaanxi province, to which wheat straw (445 t) in biomass burning and bituminous coal (438 t) in coal combustion were the highest contributors. Results from this study provide crucial knowledge for the source identification of PAHs as well as for the design of abatement strategies against pollutant emissions.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Biomass , China , Coal/analysis , Environmental Monitoring , Heating , Nitrates , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis
10.
Environ Sci Technol ; 53(21): 12389-12397, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31553592

ABSTRACT

The light-absorbing properties of atmospheric brown carbon (BrC) are poorly understood due to its complex chemical composition. Here, a black-carbon-tracer method was coupled with source apportionments of organic aerosol (OA) to explore the light-absorbing properties of primary and secondary BrC from the North China Plain (NCP). Primary emissions of BrC contributed more to OA light absorption than secondary processes, and biomass burning OA accounted for 60% of primary BrC absorption at λ = 370 nm, followed by coal combustion OA (35%) and hydrocarbon-like OA (5%). Secondary BrC absorption was high in the early morning and later decreased due to the bleaching of chromophores. Nighttime aqueous-phase chemistry promoted the formation of secondary light-absorbing compounds and the production of strongly absorbing particles. Source analysis showed that the NCP region was the most important source for primary and secondary BrC subtypes at the study site. The mean direct radiative forcing for BrC was 0.15 W m-2 (0.11 W m-2 and 0.04 W m-2 for the primary and secondary fractions, respectively). This study provides new information on the optical properties of primary and secondary BrC and highlights the importance of atmospheric oxidation on BrC absorption.


Subject(s)
Carbon , Water , Aerosols , Biomass , China
11.
Chemosphere ; 159: 367-377, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27323290

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and its oxygenated derivatives (OPAHs) are toxins in PM2.5. Little information has been known for their transformation in the ambient airs. In this study, PM2.5 samples were collected at 19 sampling sites in Xi'an, China during the heating period, which is classified into: urban residential, university, commercial area, suburban region, and industry. Organic compounds including PAHs, OPAHs, hopanes and cholestanes were quantified. The average of total quantified PAHs and OPAHs concentrations were 196.5 ng/m(3) and 29.4 ng/m(3), respectively, which were consistent with other northern cities in China. Statistical analyses showed that there were significant differences on the distributions of PAHs between urban and suburban regions. The industry also had distinguishable profiles compared with urban residential and commercial area for OPAHs. The greater diversity of OPAHs than PAHs might be due to different primary emission sources and transformation and degradation pathways. The ratios of OPAHs to the corresponding parent PAHs, including 9-fluorenone/fluorene, anthraquinone/anthracene, benz[a]anthracene-7,12-dione/benzo[a]anthracene were 6.2, 12.7, and 1.4, respectively, which were much higher than those for the fresh emissions from coal combustion and biomass burning. These prove the importance of secondary formation and transformation of OPAHs in the ambient airs. Biomarkers such as retene, cyclopenta[CD]pyrene and αα-homohopane were characterized for the source apportionment. With Positive Matrix Factorization (PMF) model analysis, biomass burning was recognized as the most dominant pollution sources for PAHs during the heading period, which accounted for a contribution of 37.1%. Vehicle emission (22.8%) and coal combustion (22.6%) were also contributors in Xi'an.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Air Pollutants/chemistry , China , Cities , Coal/analysis , Environmental Monitoring , Heating , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...