Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Orthop Res ; 34(9): 1636-44, 2016 09.
Article in English | MEDLINE | ID: mdl-26771080

ABSTRACT

The relationships between non-contact anterior cruciate ligament injuries and the underlying biomechanics are still unclear, despite large quantities of academic research. The purpose of this research was to study anterior cruciate ligament strain during jump landing by investigating its correlation with sagittal plane kinetic/kinematic parameters and by creating an empirical model to estimate the maximum strain. Whole-body kinematics and ground reaction forces were measured from seven subjects performing single leg jump landing and were used to drive a musculoskeletal model that estimated lower limb muscle forces. These muscle forces and kinematics were then applied on five instrumented cadaver knees using a dynamic knee simulator system. Correlation analysis revealed that higher ground reaction force, lower hip flexion angle and higher hip extension moment among others were correlated with higher peak strain (p < 0.05). Multivariate regression analyses revealed that intrinsic anatomic factors account for most of the variance in strain. Among the extrinsic variables, hip and trunk flexion angles significantly contributed to the strain. The empirical relationship developed in this study could be used to predict the relative strain between jumps of a participant and may be beneficial in developing training programs designed to reduce an athlete's risk of injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1636-1644, 2016.


Subject(s)
Anterior Cruciate Ligament/physiology , Knee Joint/physiology , Adult , Anterior Cruciate Ligament Injuries/prevention & control , Female , Humans , Male , Middle Aged , Young Adult
3.
Prosthet Orthot Int ; 40(3): 394-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-25805754

ABSTRACT

BACKGROUND AND AIM: It is unknown whether prophylactic knee braces can reduce the strain in the anterior cruciate ligament during dynamic activities. TECHNIQUE: An athlete, who had characteristics of high anterior cruciate ligament injury risk, was chosen. A motion capture system (Optotrak Certus; Northern Digital, Waterloo, ON, Canada) was used to record dynamic trials during drop-landing activity of this subject with and without the knee brace being worn. A musculoskeletal model was used to estimate the muscle forces during this activity. A dynamic knee simulator then applied kinematics and muscle forces on a cadaver knee with and without the brace mounted on it. The anterior cruciate ligament strain was measured. DISCUSSION: The peak strain in the anterior cruciate ligament was substantially lower for the braced (7%) versus unbraced (20%) conditions. Functional knee braces could decrease the strain in the anterior cruciate ligament during dynamic activities in a high-risk subject. However, the reduction seems to be a result of altered muscle firing pattern due to the brace. CLINICAL RELEVANCE: Prophylactic knee brace could reduce the strain in the anterior cruciate ligament of high-risk subjects during drop-landing through altered muscle firing pattern associated with brace wear. This could help reduce the anterior cruciate ligament injury risk.


Subject(s)
Anterior Cruciate Ligament Injuries/rehabilitation , Braces/statistics & numerical data , Stress, Mechanical , Biomechanical Phenomena , Cadaver , Humans , Knee Injuries/physiopathology , Knee Injuries/prevention & control , Male , Primary Prevention/methods , Sensitivity and Specificity , Young Adult
4.
J Biomech Eng ; 135(3): 35001, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-24231822

ABSTRACT

The mechanism of noncontact anterior cruciate ligament (ACL) injury is not well understood. It is partly because previous studies have been unable to relate dynamic knee muscle forces during sports activities such as landing from a jump to the strain in the ACL. We present a combined in vivo/in vitro method to relate the muscle group forces to ACL strain during jump-landing using a newly developed dynamic knee simulator. A dynamic knee simulator system was designed and developed to study the sagittal plane biomechanics of the knee. The simulator is computer controlled and uses six powerful electromechanical actuators to move a cadaver knee in the sagittal plane and to apply dynamic muscle forces at the insertion sites of the quadriceps, hamstring, and gastrocnemius muscle groups and the net moment at the hip joint. In order to demonstrate the capability of the simulator to simulate dynamic sports activities on cadaver knees, motion capture of a live subject landing from a jump on a force plate was performed. The kinematics and ground reaction force data obtained from the motion capture were input into a computer based musculoskeletal lower extremity model. From the model, the force-time profile of each muscle group across the knee during the movement was extracted, along with the motion profiles of the hip and ankle joints. This data was then programmed into the dynamic knee simulator system. Jump-landing was simulated on a cadaver knee successfully. Resulting strain in the ACL was measured using a differential variable reluctance transducer (DVRT). Our results show that the simulator has the capability to accurately simulate the dynamic sagittal plane motion and the dynamic muscle forces during jump-landing. The simulator has high repeatability. The ACL strain values agreed with the values reported in the literature. This combined in vivo/in vitro approach using this dynamic knee simulator system can be effectively used to study the relationship between sagittal plane muscle forces and ACL strain during dynamic activities.


Subject(s)
Anterior Cruciate Ligament/physiology , Biomimetics/instrumentation , Knee/physiology , Stress, Mechanical , Humans , Movement , Muscles/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...