Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14000, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890412

ABSTRACT

Intratumoral (IT) therapy is a powerful method of controlling tumor growth, but a major unsolved problem is the rapidity that injected drugs exit tumors, limiting on-target exposure and efficacy. We have developed a generic long acting IT delivery system in which a drug is covalently tethered to hydrogel microspheres (MS) by a cleavable linker; upon injection the conjugate forms a depot that slowly releases the drug and "bathes" the tumor for long periods. We established technology to measure tissue pharmacokinetics and studied MSs attached to SN-38, a topoisomerase 1 inhibitor. When MS ~ SN-38 was injected locally, tissues showed high levels of SN-38 with a long half-life of ~ 1 week. IT MS ~ SN-38 was ~ tenfold more efficacious as an anti-tumor agent than systemic SN-38. We also propose and provide an example that long-acting IT therapy might enable safe use of two drugs with overlapping toxicities. Here, long-acting IT MS ~ SN-38 is delivered with concurrent systemic PARP inhibitor. The tumor is exposed to both drugs whereas other tissues are exposed only to the systemic drug; synergistic anti-tumor activity supported the validity of this approach. We propose use of this approach to increase efficacy and reduce toxicities of combinations of immune checkpoint inhibitors such as αCTLA-4 and αPD-1.


Subject(s)
Irinotecan , Animals , Mice , Humans , Irinotecan/administration & dosage , Irinotecan/pharmacokinetics , Microspheres , Hydrogels/chemistry , Cell Line, Tumor , Topoisomerase I Inhibitors/administration & dosage , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/therapeutic use , Drug Delivery Systems , Female , Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Injections, Intralesional , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
2.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35101947

ABSTRACT

BACKGROUND: Interleukin-15 (IL-15) is an important cytokine necessary for proliferation and maintenance of natural killer (NK) and CD8+ T cells, and with great promise as an immuno-oncology therapeutic. However, IL-15 has a very short half-life and a single administration does not provide the sustained exposure required for optimal stimulation of target immune cells. The purpose of this work was to develop a very long-acting prodrug that would maintain IL-15 within a narrow therapeutic window for long periods-similar to a continuous infusion. METHODS: We prepared and characterized hydrogel microspheres (MS) covalently attached to IL-15 (MS~IL-15) by a releasable linker. The pharmacokinetics and pharmacodynamics of MS~IL-15 were determined in C57BL/6J mice. The antitumor activity of MS~IL-15 as a single agent, and in combination with a suitable therapeutic antibody, was tested in a CD8+ T cell-driven bilateral transgenic adenocarcinoma mouse prostate (TRAMP)-C2 model of prostatic cancer and a NK cell-driven mouse xenograft model of human ATL (MET-1) murine model of adult T-cell leukemia. RESULTS: On subcutaneous administration to mice, the cytokine released from the depot maintained a long half-life of about 168 hours over the first 5 days, followed by an abrupt decrease to about ~30 hours in accordance with the development of a cytokine sink. A single injection of MS~IL-15 caused remarkably prolonged expansions of NK and ɣδ T cells for 2 weeks, and CD44hiCD8+ T cells for 4 weeks. In the NK cell-driven MET-1 murine model of adult T-cell leukemia, single-agent MS~IL-1550 µg or anti-CCR4 provided modest increases in survival, but a combination-through antibody-depedent cellular cytotoxicity (ADCC)-significantly extended survival. In a CD8+ T cell-driven bilateral TRAMP-C2 model of prostatic cancer, single agent subcutaneous MS~IL-15 or unilateral intratumoral agonistic anti-CD40 showed modest growth inhibition, but the combination exhibited potent, prolonged bilateral antitumor activity. CONCLUSIONS: Our results show MS~IL-15 provides a very long-acting IL-15 with low Cmax that elicits prolonged expansion of target immune cells and high anticancer activity, especially when administered in combination with a suitable immuno-oncology agent.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Interleukin-15/administration & dosage , Leukemia, T-Cell/drug therapy , Prodrugs/administration & dosage , Prostatic Neoplasms/drug therapy , Animals , CD40 Antigens/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Drug Delivery Systems , Half-Life , Humans , Immunotherapy , Interleukin-15/pharmacokinetics , Male , Mice, Inbred C57BL , Microspheres , Prodrugs/pharmacokinetics , Receptors, CCR4/antagonists & inhibitors
3.
Front Immunol ; 11: 1813, 2020.
Article in English | MEDLINE | ID: mdl-32903632

ABSTRACT

Interleukin-15 (IL-15) is crucial for the proliferation and survival of NK and CD8+ T memory cells, and of significant interest in immuno-oncology. Immune cell expansion requires continuous IL-15 exposure above a threshold concentration for an extended period. However, the short t1/2 of IL-15 makes this impossible to achieve after a single injection without a high Cmax and toxicities. The most effective way to deliver IL-15 is continuous intra-venous infusion, but this administration mode is impractical. Efforts have been devoted to developing IL-15 agonists which after a single injection maintain the cytokine in a narrow therapeutic window for a long period. Enigmatically, although the half-life extension technologies used often extend the half-life of a protein to 1 or more weeks, the modified IL-15 agonists studied usually have systemic elimination half-lives of only a few hours and rarely much longer than 1 day. These short half-lives-common to all circulating IL-15 agonists thus far reported-can be explained by a dynamic increase in clearance of the agonists that accompanies target immune cell proliferation. What is needed is an IL-15 agonist that is as effective as continuous intravenous infusion, but with the convenience and acceptance of single injections at 1-week or longer intervals.


Subject(s)
Immunologic Factors/pharmacokinetics , Interleukin-15/agonists , Interleukin-15/pharmacokinetics , Animals , Half-Life , Humans , Protein Stability , Receptors, Interleukin-15/agonists
4.
Nat Commun ; 11(1): 2931, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523014

ABSTRACT

Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.


Subject(s)
Iron/metabolism , Lysine/metabolism , Oxygenases/metabolism , Arabidopsis/metabolism , Oryza/metabolism , Pseudomonas putida/metabolism
5.
Sci Adv ; 5(8): eaaw9906, 2019 08.
Article in English | MEDLINE | ID: mdl-31453333

ABSTRACT

Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor components, including microfluidic chip and sensing electrodes. To overcome this challenge, we introduce microfluidic sensing patches mass fabricated via roll-to-roll (R2R) processes. The patch allows sweat capture within a spiral microfluidic for real-time measurement of sweat parameters including [Na+], [K+], [glucose], and sweat rate in exercise and chemically induced sweat. The patch is demonstrated for investigating regional sweat composition, predicting whole-body fluid/electrolyte loss during exercise, uncovering relationships between sweat metrics, and tracking glucose dynamics to explore sweat-to-blood correlations in healthy and diabetic individuals. By enabling a comprehensive sweat analysis, the presented device is a crucial tool for advancing sweat testing beyond the research stage for point-of-care medical and athletic applications.


Subject(s)
Glucose/analysis , Microfluidics/methods , Potassium/analysis , Sodium/analysis , Sweat/chemistry , Biosensing Techniques , Diabetes Mellitus/metabolism , High-Throughput Screening Assays , Humans , Ions/analysis , Potassium/chemistry , Sodium/chemistry
6.
J Biol Chem ; 294(32): 12157-12166, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31235519

ABSTRACT

Degradation of polysaccharides is central to numerous biological and industrial processes. Starch-active polysaccharide monooxygenases (AA13 PMOs) oxidatively degrade starch and can potentially be used with industrial amylases to convert starch into a fermentable carbohydrate. The oxidative activities of the starch-active PMOs from the fungi Neurospora crassa and Myceliophthora thermophila, NcAA13 and MtAA13, respectively, on three different starch substrates are reported here. Using high-performance anion-exchange chromatography coupled with pulsed amperometry detection, we observed that both enzymes have significantly higher oxidative activity on amylose than on amylopectin and cornstarch. Analysis of the product distribution revealed that NcAA13 and MtAA13 more frequently oxidize glycosidic linkages separated by multiples of a helical turn consisting of six glucose units on the same amylose helix. Docking studies identified important residues that are involved in amylose binding and suggest that the shallow groove that spans the active-site surface of AA13 PMOs favors the binding of helical amylose substrates over nonhelical substrates. Truncations of NcAA13 that removed its native carbohydrate-binding module resulted in diminished binding to amylose, but truncated NcAA13 still favored amylose oxidation over other starch substrates. These findings establish that AA13 PMOs preferentially bind and oxidize the helical starch substrate amylose. Moreover, the product distributions of these two enzymes suggest a unique interaction with starch substrates.


Subject(s)
Fungal Proteins/metabolism , Mixed Function Oxygenases/metabolism , Starch/metabolism , Amylose/chemistry , Amylose/metabolism , Binding Sites , Catalytic Domain , Fungal Proteins/chemistry , Mixed Function Oxygenases/chemistry , Molecular Docking Simulation , Neurospora crassa/enzymology , Oxidation-Reduction , Protein Conformation, alpha-Helical , Sordariales/enzymology , Starch/chemistry , Substrate Specificity
7.
Inorg Chem ; 57(20): 12588-12595, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30252455

ABSTRACT

α-Ketoglutarate (αKG) dependent oxygenases comprise a large superfamily of enzymes that activate O2 for varied reactions. While most of these enzymes contain a nonheme Fe bound by a His2(Asp/Glu) facial triad, a small number of αKG-dependent halogenases require only the two His ligands to bind Fe and activate O2. The enzyme "factor inhibiting HIF" (FIH) contains a His2Asp facial triad and selectively hydroxylates polypeptides; however, removal of the Asp ligand in the Asp201→Gly variant leads to a highly active enzyme, seemingly without a complete facial triad. Herein, we report on the formation of an Fe-Cl cofactor structure for the Asp201→Gly FIH variant using X-ray absorption spectroscopy (XAS), which provides insight into the structure of the His2Cl facial triad found in halogenases. The Asp201→Gly variant supports anion dependent peptide hydroxylation, demonstrating the requirement for a complete His2X facial triad to support O2 reactivity. Our results indicated that exogenous ligand binding to form a complete His2X facial triad was essential for O2 activation and provides a structural model for the His2Cl-bound nonheme Fe found in halogenases.


Subject(s)
Chlorides/chemistry , Iron/metabolism , Mixed Function Oxygenases/metabolism , Oxygen/metabolism , Repressor Proteins/metabolism , Absorptiometry, Photon , Amino Acid Substitution , Chlorides/metabolism , Iron/chemistry , Ligands , Mixed Function Oxygenases/chemistry , Protein Binding , Protein Conformation , Repressor Proteins/chemistry
8.
Proc Natl Acad Sci U S A ; 115(19): 4915-4920, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686097

ABSTRACT

Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on H2O2 Reported here is a detailed analysis of PMO reactivity with H2O2 and O2, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O2 in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize H2O2 (peroxygenase activity) produced from the uncoupled reduction of O2 Both cosubstrates require Cu reduction to Cu(I), but the reaction with H2O2 leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O2 reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O2 reactive intermediate. Moreover, H2O2 does not influence the ability of secretome from Neurospora crassa to degrade Avicel, providing evidence that molecular oxygen is a physiologically relevant cosubstrate for PMOs.


Subject(s)
Fungal Proteins/chemistry , Glycoside Hydrolases/chemistry , Hydrogen Peroxide/chemistry , Mixed Function Oxygenases/chemistry , Oxygen/chemistry , Sordariales/enzymology , Catalytic Domain , Copper/chemistry
9.
Biochemistry ; 57(22): 3191-3199, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29683313

ABSTRACT

Polysaccharide monooxygenases (PMOs) are mononuclear copper enzymes that catalyze the hydroxylation of polysaccharides leading to the scission of the glycosidic bond. The mechanism, in which PMOs utilize molecular oxygen to oxidize the polysaccharide substrate, still remains largely unknown. Here, steady-state kinetics assays were used to probe the mechanism of oxygen-dependent cellohexaose oxidation catalyzed by MtPMO9E. Kinetic analysis indicated that both kcat/ KM(O2) and kcat/ KM(Glc6) were dependent on the concentration of the second substrate. Inhibition studies using carbon monoxide were also carried out. In addition, KD values for Glc6 were determined for the Cu(I) and Cu(II) forms of the enzyme. Taken together, PMOs follow a random-sequential kinetic mechanism to form a ternary ES-O2 complex. The optimal pH for MtPMO9E turnover was determined to be between pH 6.00 and pH 7.00. Furthermore, the kinetic parameters kcat, kcat/ KM(O2), and kcat/ KM(Glc6) demonstrate a decrease in PMO activity at a low pH and provide equivalent kinetic p Ka's of 5.10. This points to the protonation of a general base required for turnover. These results provide a basis for the initial chemical steps in the mechanism of PMOs.


Subject(s)
Copper/chemistry , Mixed Function Oxygenases/chemistry , Catalysis , Copper/metabolism , Hydrogen-Ion Concentration , Kinetics , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Oxygen/chemistry , Polysaccharides/chemistry
10.
J Inorg Biochem ; 178: 63-69, 2018 01.
Article in English | MEDLINE | ID: mdl-29078149

ABSTRACT

Non-heme Fe(II)/α-ketoglutarate (αKG)-dependent oxygenases catalyze a wide array of reactions through coupling oxidative decarboxylation of αKG to substrate oxygenation. This class of enzymes follows a sequential mechanism in which O2 reacts only after binding primary substrate, raising questions over how protein structure tailors molecular access to the Fe(II) cofactor. The enzyme "factor inhibiting hypoxia inducible factor" (FIH) senses pO2 in human cells by hydroxylating the C-terminal transactivation domain (CTAD), suggesting that structural elements limiting molecular access to the active site may limit the pO2 response. In this study, we tested the impact of a solvent-accessible tunnel in FIH on molecular access to the active site in FIH. The size of the tunnel was increased through alanine point mutagenesis (Y93A, E105A, and Q147A), followed by a suite of mechanistic and spectroscopic probes. Steady-state kinetics varying O2 or CTAD indicated that O2 passage through the tunnel was not affected by Ala substitutions, allowing us to conclude that this narrow tunnel did not impact pO2 sensing by FIH. Steady-state kinetics with varied αKG concentrations revealed increased substrate inhibition for the Ala variants, suggesting that a second αKG molecule may bind near the active site of FIH. If this solvent-accessible tunnel is the O2 entry tunnel, it may be narrow in order to permit O2 access while preventing metabolic intermediates, such as αKG, from inhibiting FIH under physiological conditions.


Subject(s)
Hypoxia-Inducible Factor 1/antagonists & inhibitors , Hypoxia-Inducible Factor 1/chemistry , Ketoglutaric Acids/metabolism , Oxygenases/metabolism , Catalytic Domain , Citric Acid/chemistry , Citric Acid/pharmacology , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Genetic Variation , Humans , Hypoxia-Inducible Factor 1/genetics , Ketoglutaric Acids/chemistry , Kinetics , Oxaloacetic Acid/chemistry , Oxaloacetic Acid/pharmacology , Oxygenases/chemistry , Solvents/chemistry
11.
Microbiol Mol Biol Rev ; 81(3)2017 09.
Article in English | MEDLINE | ID: mdl-28659491

ABSTRACT

Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.


Subject(s)
Bacteria/enzymology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Animals , Bacteria/genetics , Bacteria/metabolism , Bacteria/pathogenicity , Bacterial Infections/microbiology , Cellulose/metabolism , Chitin/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Host-Pathogen Interactions , Humans , Listeria monocytogenes/enzymology , Listeria monocytogenes/genetics , Mixed Function Oxygenases/chemistry , Pseudomonas/enzymology , Pseudomonas/genetics , Substrate Specificity , Virulence Factors
12.
J Inorg Biochem ; 166: 26-33, 2017 01.
Article in English | MEDLINE | ID: mdl-27815979

ABSTRACT

The factor inhibiting hypoxia inducible factor-1α (FIH) is a nonheme Fe(II)/αKG oxygenase using a 2-His-1-Asp facial triad. FIH activates O2 via oxidative decarboxylation of α-ketoglutarate (αKG) to generate an enzyme-based oxidant which hydroxylates the Asn803 residue within the C-terminal transactivation domain (CTAD) of HIF-1α. Tight coupling of these two sequential reactions requires a structural linkage between the Fe(II) and the substrate binding site to ensure that O2 activation occurs after substrate binds. We tested the hypothesis that the facial triad carboxylate (Asp201) of FIH linked substrate binding and O2 binding sites. Asp201 variants of FIH were constructed and thoroughly characterized in vitro using steady-state kinetics, crystallography, autohydroxylation, and coupling measurements. Our studies revealed each variant activated O2 with a catalytic efficiency similar to that of wild-type (WT) FIH (kcataKM(O2)=0.17µM-1min-1), but led to defects in the coupling of O2 activation to substrate hydroxylation. Steady-state kinetics showed similar catalytic efficiencies for hydroxylation by WT-FIH (kcat/KM(CTAD)=0.42µM-1min-1) and D201G (kcat/KM(CTAD)=0.34µM-1min-1); hydroxylation by D201E was greatly impaired, while hydroxylation by D201A was undetectable. Analysis of the crystal structure of the D201E variant revealed steric crowding near the diffusible ligand site supporting a role for sterics from the facial triad carboxylate in the O2 binding order. Our data support a model in which the facial triad carboxylate Asp201 provides both steric and polar contacts to favor O2 access to the Fe(II) only after substrate binds, leading to coupled turnover in FIH and other αKG oxygenases.


Subject(s)
Mixed Function Oxygenases/chemistry , Oxygen/chemistry , Repressor Proteins/chemistry , Amino Acid Substitution , Asparagine/chemistry , Asparagine/genetics , Asparagine/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Humans , Hydroxylation , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation, Missense , Oxygen/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
14.
Biochemistry ; 53(36): 5750-8, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25119663

ABSTRACT

Nonheme Fe(II)/αKG-dependent oxygenases catalyze diverse reactions, typically inserting an O atom from O2 into a C-H bond. Although the key to their catalytic cycle is the fact that binding and positioning of primary substrate precede O2 activation, the means by which substrate binding stimulates turnover is not well understood. Factor Inhibiting HIF (FIH) is a Fe(II)/αKG-dependent oxygenase that acts as a cellular oxygen sensor in humans by hydroxylating the target residue Asn(803), found in the C-terminal transactivation domain (CTAD) of hypoxia inducible factor-1. FIH-Gln(239) makes two hydrogen bonds with CTAD-Asn(803), positioning this target residue over the Fe(II). We hypothesized the positioning of the side chain of CTAD-Asn(803) by FIH-Gln(239) was critical for stimulating O2 activation and subsequent substrate hydroxylation. The steady-state characterization of five FIH-Gln(239) variants (Ala, Asn, Glu, His, and Leu) tested the role of hydrogen bonding potential and sterics near the target residue. Each variant exhibited a 20-1200-fold decrease in kcat and kcat/KM(CTAD), but no change in KM(CTAD), indicating that the step after CTAD binding was affected by point mutation. Uncoupled O2 activation was prominent in these variants, as shown by large coupling ratios (C = [succinate]/[CTAD-OH] = 3-5) for each of the FIH-Gln(239) → X variants. The coupling ratios decreased in D2O, indicating an isotope-sensitive inactivation for variants, not observed in the wild type. The data presented indicate that the proper positioning of CTAD-Asn(803) by FIH-Gln(239) is necessary to suppress uncoupled turnover and to support substrate hydroxylation, suggesting substrate positioning may be crucial for directing O2 reactivity within the broader class of αKG hydroxylases.


Subject(s)
Glycine/metabolism , Mixed Function Oxygenases/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Kinetics , Mixed Function Oxygenases/chemistry , Molecular Sequence Data , Repressor Proteins/chemistry , Spectrometry, Fluorescence , Substrate Specificity
15.
J Inorg Biochem ; 133: 63-72, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24468676

ABSTRACT

The ability to sense and adapt to changes in pO2 is crucial for basic metabolism in most organisms, leading to elaborate pathways for sensing hypoxia (low pO2). This review focuses on the mechanisms utilized by mammals and bacteria to sense hypoxia. While responses to acute hypoxia in mammalian tissues lead to altered vascular tension, the molecular mechanism of signal transduction is not well understood. In contrast, chronic hypoxia evokes cellular responses that lead to transcriptional changes mediated by the hypoxia inducible factor (HIF), which is directly controlled by post-translational hydroxylation of HIF by the non-heme Fe(II)/αKG-dependent enzymes FIH and PHD2. Research on PHD2 and FIH is focused on developing inhibitors and understanding the links between HIF binding and the O2 reaction in these enzymes. Sulfur speciation is a putative mechanism for acute O2-sensing, with special focus on the role of H2S. This sulfur-centered model is discussed, as are some of the directions for further refinement of this model. In contrast to mammals, bacterial O2-sensing relies on protein cofactors that either bind O2 or oxidatively decompose. The sensing modality for bacterial O2-sensors is either via altered DNA binding affinity of the sensory protein, or else due to the actions of a two-component signaling cascade. Emerging data suggests that proteins containing a hemerythrin-domain, such as FBXL5, may serve to connect iron sensing to O2-sensing in both bacteria and humans. As specific molecular machinery becomes identified, these hypoxia sensing pathways present therapeutic targets for diseases including ischemia, cancer, or bacterial infection.


Subject(s)
Hypoxia/metabolism , Oxygen/metabolism , Signal Transduction/genetics , Animals , Bacteria/metabolism , Heme/metabolism , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mammals/metabolism
16.
Dalton Trans ; 43(4): 1505-8, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24292428

ABSTRACT

Non-heme Fe(II) enzymes exhibit a general mechanistic strategy where binding all cosubstrates opens a coordination site on the Fe(II) for O2 activation. This study shows that strong-donor ligands, steric interactions with the substrate and second-sphere H-bonding to the facial triad carboxylate allow for five-coordinate site formation in this enzyme superfamily.


Subject(s)
Enzymes/chemistry , Ferrous Compounds/chemistry , Heme/chemistry , Substrate Specificity
17.
J Am Chem Soc ; 135(26): 9665-74, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23742069

ABSTRACT

Factor inhibiting hypoxia-inducible factor (FIH) is an α-ketoglutarate (αKG)-dependent enzyme which catalyzes hydroxylation of residue Asn803 in the C-terminal transactivation domain (CAD) of hypoxia-inducible factor 1α (HIF-1α) and plays an important role in cellular oxygen sensing and hypoxic response. Circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies are used to determine the geometric and electronic structures of FIH in its (Fe(II)), (Fe(II)/αKG), and (Fe(II)/αKG/CAD) forms. (Fe(II))FIH and (Fe(II)/αKG)FIH are found to be six-coordinate (6C), whereas (Fe(II)/αKG/CAD)FIH is found to be a 5C/6C mixture. Thus, FIH follows the general mechanistic strategy of non-heme Fe(II) enzymes. Modeling shows that, when Arg238 of FIH is removed, the facial triad carboxylate binds to Fe(II) in a bidentate mode with concomitant lengthening of the Fe(II)/αKG carbonyl bond, which would inhibit the O2 reaction. Correlations over α-keto acid-dependent enzymes and with the extradiol dioxygenases show that members of these families (where both the electron source and O2 bind to Fe(II)) have a second-sphere residue H-bonding to the terminal oxygen of the carboxylate, which stays monodentate. Alternatively, structures of the pterin-dependent and Rieske dioxygenases, which do not have substrate binding to Fe(II), lack H-bonds to the carboxylate and thus allow its bidentate coordination which would direct O2 reactivity. Finally, vis-UV MCD spectra show an unusually high-energy Fe(II) → αKG π* metal-to-ligand charge transfer transition in (Fe(II)/αKG)FIH which is red-shifted upon CAD binding. This red shift indicates formation of H-bonds to the αKG that lower the energy of its carbonyl LUMO, activating it for nucleophilic attack by the Fe-O2 intermediate formed along the reaction coordinate.


Subject(s)
Mixed Function Oxygenases/chemistry , Repressor Proteins/chemistry , Circular Dichroism , Crystallography, X-Ray , Humans , Mixed Function Oxygenases/metabolism , Models, Molecular , Quantum Theory , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Spectroscopy, Near-Infrared
18.
Metallomics ; 5(4): 287-301, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23446356

ABSTRACT

The Fe(ii)/αketoglutarate (αKG) dependent oxygenases catalyze a diverse range of reactions significant in biological processes such as antibiotic biosynthesis, lipid metabolism, oxygen sensing, and DNA and RNA repair. Although functionally diverse, the eight-stranded ß-barrel (cupin) and HX(D/E)XnH facial triad motifs are conserved in this super-family of enzymes. Crystal structure analysis of 25 αKG oxygenases reveals two stereoisomers of the Fe cofactor, Anti and Clock, which differ in the relative position of the exchangeable ligand position and the primary substrate. Herein, we discuss the relationship between the chemical mechanism and the secondary coordination sphere of the αKG oxygenases, within the constraints of the stereochemistry of the Fe cofactor. Sequence analysis of the cupin barrel indicates that a small subset of positions constitute the second coordination sphere, which has significant ramifications for the structure of the ferryl intermediate. The competence of both Anti and Clock stereoisomers of Fe points to a ferryl intermediate that is 5 coordinate. The small number of conserved close contacts within the active sites of αKG oxygenases can be extended to chemically related enzymes, such as the αKG-dependent halogenases SyrB2 and CytC3, and the non-αKG dependent dioxygenases isopenicillin N synthase (IPNS) and cysteine dioxygenase (CDO).


Subject(s)
Metals/chemistry , Oxygenases/chemistry , Oxygenases/metabolism , Amino Acid Sequence , Ketoglutaric Acids , Metals/metabolism , Molecular Sequence Data , Protein Structure, Secondary , Stereoisomerism , Substrate Specificity
19.
Biochemistry ; 52(9): 1594-602, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23351038

ABSTRACT

Oxygen homeostasis plays a critical role in angiogenesis, erythropoiesis, and cell metabolism. Oxygen homeostasis is set by the hypoxia inducible factor-1α (HIF-1α) pathway, which is controlled by factor inhibiting HIF-1α (FIH). FIH is a non-heme Fe(II), α-ketoglutarate (αKG)-dependent dioxygenase that inhibits HIF-1α by hydroxylating the C-terminal transactivation domain (CTAD) of HIF-1α at HIF-Asn(803). A tight coupling between CTAD binding and O2 activation is essential for hypoxia sensing, making changes in the coordination geometry of Fe(II) upon CTAD encounter a crucial feature of this enzyme. Although the consensus chemical mechanism for FIH proposes that CTAD binding triggers O2 activation by causing the Fe(II) cofactor to release an aquo ligand, experimental evidence of this has been absent. More broadly, this proposed coordination change at Fe(II) has not been observed during steady-state turnover in any αKG oxygenase to date. In this work, solvent isotope effects (SIEs) were used as a direct mechanistic probe of substrate-triggered aquo release in FIH, as inverse SIEs (SIE < 1) are signatures for pre-equilibrium aquo release from metal ions. Our mechanistic studies of FIH have revealed inverse solvent isotope effects in the steady-state rate constants at limiting concentrations of CTAD or αKG [(D2O)kcat/KM(CTAD) = 0.40 ± 0.07, and (D2O)kcat/KM(αKG) = 0.32 ± 0.08], providing direct evidence of aquo release during steady-state turnover. Furthermore, the SIE at saturating concentrations of CTAD and αKG was inverse ((D2O)kcat = 0.51 ± 0.07), indicating that aquo release occurs after CTAD binds. The inverse kinetic SIEs observed in the steady state for FIH can be explained by a strong Fe-OH2 bond. The stable Fe-OH2 bond plays an important part in FIH's regulatory role over O2 homeostasis in humans and points toward a strategy for tightly coupling O2 activation with CTAD hydroxylation that relies on substrate triggering.


Subject(s)
Deuterium Oxide/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ketoglutaric Acids/metabolism , Mixed Function Oxygenases/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Kinetics , Mixed Function Oxygenases/chemistry , Molecular Sequence Data , Oxygen/metabolism , Protein Structure, Tertiary , Repressor Proteins/chemistry , Substrate Specificity
20.
Biochemistry ; 50(21): 4733-40, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21456582

ABSTRACT

The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn(205) and Asn(294)) or HIF-Asn(803)-centered (Arg(238) and Gln(239)) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O(2), oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn(205) → Ala and Asn(294) → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg(238) → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg(238) → Met mutant was capable of O(2) activation for the autohydroxylation reaction. The Gln(239) → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln(239) → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn(803) side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O(2), and positioning HIF-Asn(803).


Subject(s)
Mixed Function Oxygenases/physiology , Animals , Calorimetry, Differential Scanning , Electron Spin Resonance Spectroscopy , Hydroxylation , Mice , Mixed Function Oxygenases/chemistry , Models, Molecular , Point Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...