Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Aging (Albany NY) ; 13(9): 13108-13123, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33971624

ABSTRACT

Evidence indicates that neutrophil has promoted inflammation in several central nervous system diseases. However, whether the peripheral blood levels of neutrophils are associated with the functional outcome after subarachnoid hemorrhage and its potential mechanism remain unclear. In this study, we showed that neutrophil levels in peripheral blood were higher in patients with subarachnoid hemorrhage (P < 0.001) than in healthy subjects. Neutrophil levels were positively associated with Hunt and Hess grade (P < 0.001) and modified Rankin Scale scores at 3 months after SAH (P = 0.008). In terms of the mechanism, neutrophil extracellular traps markedly increased the proinflammatory subtype transition of microglia. After treatment with DNAse I, the proinflammatory subtype transition of microglia involving CD16 positive and IL-1ß positive microglia was limited (P < 0.05). This mechanism was also verified in vitro. These results indicate that the existence of neutrophil extracellular traps, released from neutrophils after subarachnoid hemorrhage, can shift microglia toward a more proinflammatory phenotype and contribute to neuroinflammation and poor outcome in subarachnoid hemorrhage.


Subject(s)
Inflammation/metabolism , Microglia/cytology , Neutrophils/cytology , Subarachnoid Hemorrhage/therapy , Adult , Aged , Aged, 80 and over , Extracellular Traps , Female , Humans , Male , Middle Aged , Phenotype
2.
Neuroscience Bulletin ; (6): 1412-1426, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-922631

ABSTRACT

Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.


Subject(s)
Humans , Anilides/pharmacology , Cerebral Hemorrhage/drug therapy , Hematoma/drug therapy , Macrophages , Microglia , Neuroprotection , PPAR gamma , Retinoid X Receptor alpha
3.
Neuroscience Bulletin ; (6): 1412-1426, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-951944

ABSTRACT

Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.

SELECTION OF CITATIONS
SEARCH DETAIL
...