Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 330: 61-67, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28212510

ABSTRACT

A lab-scale Sequencing Batch Reactor (SBR) was implemented to investigate biological treatability and kinetic characteristics of paint shop wastewater (PSW) together with main stream wastewater (MSW) of a bus production factory. Readily biodegradable and slowly biodegradable COD fractions of MWS were determined by respirometric analysis: 4.2% (SS), 10.4% (SH) and 59.3% (XS). Carbon and nitrogen removal performance of the SBR feeding with MSW alone were obtained as 89% and 58%, respectively. When PSW was introduced to MSW, both carbon and nitrogen removal were deteriorated. Model simulation indicated that maximum heterotrophic growth rate decreased from 7.2 to 5.7day-1, maximum hydrolysis rates were reduced from 6 to 4day-1 (khS) and 4 to 1day-1 (khX). Based on the dynamic model simulation for the evaluation of nitrogen removal, a maximum specific nitrifier growth rate was obtained as 0.45day-1 for MSW feeding alone. When PSW was introduced, nitrification was completely inhibited and following the termination of PSW addition, nitrogen removal performance was recovered in about 100 days, however with a much lower nitrifier growth rate (0.1day-1), possibly due to accumulation of toxic compounds in the sludge. Obviously, a longer recovery period is required to ensure an active nitrifier community.


Subject(s)
Bioreactors , Industrial Waste , Waste Disposal, Fluid , Automobiles , Carbon/isolation & purification , Nitrification , Nitrogen/isolation & purification , Paint
2.
Article in English | MEDLINE | ID: mdl-21104491

ABSTRACT

The paper provided a comprehensive evaluation of the mechanism and design of intermittent aeration activated sludge process for nitrogen removal. Based on the specific character of the process the total cycle time, (T(C)), the aerated fraction, (AF), and the cycle time ratio, (CTR) were defined as major design parameters, aside from the sludge age of the system. Their impact on system performance was evaluated by means of process simulation. A rational design procedure was developed on the basis of basic stochiometry and mass balance related to the oxidation and removal of nitrogen under aerobic and anoxic conditions, which enabled selected of operation parameters of optimum performance. The simulation results indicated that the total nitrogen level could be reduced to a minimum level by appropriate manipulation of the aerated fraction and cycle time ratio. They also showed that the effluent total nitrogen could be lowered to around 4.0 mgN/L by adjusting the dissolved oxygen set-point to 0.5 mg/L, a level which promotes simultaneous nitrification and denitrification.


Subject(s)
Nitrogen/isolation & purification , Sewage/chemistry , Sewage/microbiology , Aerobiosis , Denitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...