Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(32): 48491-48508, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35192167

ABSTRACT

The water quality index is one of the prominent general indicators to assess and classify surface water quality, which plays a critical role in river water resources practices. This research constructs a hybrid artificial intelligence model namely sequential minimal optimization-support vector machine (SMO-SVM) along with random forest (RF) as a benchmark model for predicting water quality values at the Wadi Saf-Saf river basin in Algeria. The fifteen input water quality datasets such as biochemical oxygen demand (BOD), oxygen saturation (OS), the potential for hydrogen (pH), chemical oxygen demand (COD), chloride (Cl-), dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS), nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), phosphate (PO43-), ammonium (NH4+), temperature (T), turbidity (NTU), and suspended solids (SS) were employed for constructing the predictive models. Different input data combinations are evaluated in terms of predictive performance, using a set of statistical metrics and graphical representation. Results show that less than 40% of samples were observed to be poor quality water during the dry season in downstream northeastern part of the basin. The findings also show that the RF model mostly generates more precise water quality index predictions than the SMO-SVM model for both training and testing stages. Although thirteen input parameters attain the optimal predictive performance (R2 testing = 0.82, RMSE testing = 5.17), a couple of five input parameters, e.g., only pH, EC, TDS, T, and saturation, gives the second optimal predictive precision (R2 test = 0.81, RMSE testing = 5.55). The sensitivity analysis results indicate a greater sensitivity by the all input variables chosen except NO2- of the predictive outcomes to the earlier influencing water quality parameters. Overall, the RF model reveals an improvement on earlier tools for predicting water quality index, according to predictive performance and reducing in the number of input variables.


Subject(s)
Water Pollutants, Chemical , Water Quality , Artificial Intelligence , Environmental Monitoring/methods , Nitrogen/analysis , Nitrogen Dioxide/analysis , Oxygen/analysis , Support Vector Machine , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 180(1-4): 537-56, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21170584

ABSTRACT

This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.


Subject(s)
Conservation of Natural Resources/methods , Geological Phenomena , Models, Statistical , Soil/chemistry , Israel , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...