Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 270: 116048, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33190982

ABSTRACT

Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.


Subject(s)
Dreissena , Water Pollutants, Chemical , Animals , Belgium , Environmental Monitoring , France , Metabolomics , Proton Magnetic Resonance Spectroscopy , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Metabolites ; 10(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570933

ABSTRACT

The zebra mussel (Dreissena polymorpha) represents a useful reference organism for the ecotoxicological study of inland waters, especially for the characterization of the disturbances induced by human activities. A nuclear magnetic resonance (NMR)-based metabolomic approach was developed on this species. The investigation of its informative potential required the prior interpretation of a reference 1H NMR spectrum of a lipid-free zebra mussel extract. After the extraction of polar metabolites from a pool of whole-body D. polymorpha powder, the resulting highly complex 1D 1H NMR spectrum was interpreted and annotated through the analysis of the corresponding 2D homonuclear and heteronuclear NMR spectra. The spectrum interpretation was completed and validated by means of sample spiking with 24 commercial compounds. Among the 238 detected 1H signals, 53% were assigned, resulting in the identification of 37 metabolites with certainty or high confidence, while 5 metabolites were only putatively identified. The description of such a reference spectrum and its annotation are expected to speed up future analyses and interpretations of NMR-based metabolomic studies on D. polymorpha and to facilitate further explorations of the impact of environmental changes on its physiological state, more particularly in the context of large-scale ecological and ecotoxicological studies.

3.
Ecotoxicol Environ Saf ; 174: 48-57, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30818260

ABSTRACT

Knowledge about combined effects of chemicals and temperature on reproductive capacity of fish are rare in literature, especially when it comes to the effects of chronic low-dose chemical exposure combined to the thermal stress. The aim of the study was to evaluate the single and combined effects of temperature (16, 18, 21 °C) and an environmentally relevant concentration of waterborne cadmium (1 µg L-1, nominal concentration) on the reproductive outputs of threespine stickleback (Gasterosteus aculeatus), and their consequences on offspring survival parameters. The high temperature (21 °C) was the only factor that affected parental parameters (gonadosomatic index "GSI", and vitellogenin "VTG" particularly). On females, 21 °C had a stimulating effect on gonadal development evaluated by an early increase, followed by a sharp decrease of GSI, probably indicating gonadal atresia. Promoting effect of temperature was corroborated by an early production of VTG. In vitro fertilization assays showed interesting results, particularly cadmium effects. As it was supposed, high temperature had a negative impact on offspring parameters (significant decrease in survival and an increase of unhatched embryos). Parental exposure to the very low concentration of cadmium had also negative consequences on mortality rate (significant increase) and hatching rate (significant decrease). Our results indicate that in a global warming context, high temperature and its combination with contaminant may impact reproductive capacity of G. aculeatus, by decreasing parental investment (low eggs and/or sperm quality).


Subject(s)
Cadmium/toxicity , Smegmamorpha/physiology , Temperature , Water Pollutants, Chemical/toxicity , Animals , Female , Gonads/drug effects , Male , Reproduction/drug effects , Water
4.
Aquat Toxicol ; 199: 252-262, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29677587

ABSTRACT

The development of predictive, sensitive and reliable biomarkers is of crucial importance for aquatic biomonitoring to assess the effects of chemical substances on aquatic organisms, especially when it comes to combined effects with other stressors (e.g. temperature). The first purpose of the present study was to evaluate the single and combined effects of 90 days of exposure to an environmental cadmium concentration (0.5 µg L-1) and two water temperatures (16 and 21 °C) on different parameters. These parameters are involved in (i) the antioxidant system (superoxide dismutase activity -SOD- and total glutathione levels -GSH-), (ii) the energy metabolism, i.e. energy reserves (glycogen, lipids, proteins) and digestive enzymes (trypsin, amylase, intestinal alkaline phosphatase -IAP-), and (iii) biometric parameters (weight, length, Fulton's condition factor, and the gonadosomatic index -GSI-) of threespine stickleback (Gasterosteus aculeatus). The second purpose was to determine the interest of the three digestive enzymes as biomarkers in comparison with the other parameters. The higher temperature (21 °C) impacted the anti-oxidant and energy reserve parameters. In liver, GSH levels increased on day 60, while SOD decreased on days 15 and 90, with a significant decrease of protein and lipid energy reserves on day 90. In muscle, the higher temperature decreased SOD activity only on day 90. G. aculeatus biometric parameters were also impacted by the higher temperature, which limited stickleback growth after 90 days of exposure. In female sticklebacks, the GSI peaked on day 60 and decreased sharply on day 90, while the highest values were reached at day 90 in the control groups, suggesting impaired reproduction in sticklebacks raised at 21 °C. These results suggest that 21 °C is an upper-limit temperature for long-term physiological processes in sticklebacks. In contrast, very low-concentration cadmium exposure had no effect on classical biomarkers (energy reserves, antioxidant parameters, biometric parameters). However, digestive enzymes showed an interesting sensitivity to cadmium, which was emphasized by high temperature. The activity of the three digestive enzymes decreased significantly on day 90 when sticklebacks were exposed to cadmium alone, while the decrease was stronger and was recorded earlier (from day 15) when they were exposed to the cadmium-temperature combination. Compared to conventional measurements, digestive enzymes responded rapidly. This could be an important advantage for them to be used as early warning tools to reflect the health status of organisms, particularly for trypsin and IAP activities.


Subject(s)
Biomarkers/metabolism , Cadmium/toxicity , Digestion , Environmental Exposure , Enzymes/metabolism , Smegmamorpha/physiology , Temperature , Alkaline Phosphatase/metabolism , Amylases/metabolism , Animals , Antioxidants/metabolism , Energy Metabolism/drug effects , Environmental Monitoring , Oxidative Stress/drug effects , Smegmamorpha/growth & development , Trypsin/metabolism , Water Pollutants, Chemical/toxicity
5.
PLoS One ; 13(4): e0194932, 2018.
Article in English | MEDLINE | ID: mdl-29614133

ABSTRACT

Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler's index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.


Subject(s)
Digestive System/enzymology , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/enzymology , Smegmamorpha/anatomy & histology , Smegmamorpha/metabolism , Animals , Body Size , Enzyme Activation , Photoperiod , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...