Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Asian Pac J Cancer Prev ; 23(1): 241-251, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35092394

ABSTRACT

OBJECTIVE: To investigate vetiver oil (VO) selectivity effects on several cancer cell types and identify the ß-caryophyllene role and mechanisms to prevent cancer development. METHODS: Cytotoxic effects of VO on three types of cancer cells (WiDr, 4T1, T47D) were determined using MTT assay. VO's effects on the cell cycle and apoptosis were analyzed using flow cytometry. Intracellular Reactive Oxygen Species (ROS) of cells after treatment with VO was observed with DCFDA staining. Bioinformatics study and molecular docking were used to determine the molecular targets of VO. RESULTS: VO contained various essential oils in which ß-caryophyllene was the most abundant. 4T1 cells performed the lowest IC50 value. WiDr and 4T1 cells showed an arrest in the G2/M phase, while T47D showed an increase of sub G1 population after VO treatment. On the other hand, apoptosis was only observed in WiDr and T47D cells. ROS levels were increased significantly in WiDr and T47D cells but not in 4T1 cells. Cannabinoids CB2 receptor (CNR2) was highly expressed in 4T1 cells and commonly exhibited a low survival rate on Triple Negative Breast Cancer (TNBC) patients. CNR2 was the notable target of ß-caryophyllene and performed agonistic interaction, which might have contributed to its cytotoxic activity against 4T1 cells. CONCLUSION: The molecular interaction of VO cannabinoid agonists and the CNR2 receptor was the underlying cause of VO cytotoxicity, which is a VO distinction on TNBC. Therefore, VO is better suited for use as an anti-cancer agent in TNBC cells.


Subject(s)
Antineoplastic Agents/pharmacology , Chrysopogon , Plant Oils/pharmacology , Receptor, Cannabinoid, CB2/drug effects , Triple Negative Breast Neoplasms/drug therapy , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Female , Humans , Molecular Docking Simulation , Reactive Oxygen Species , Receptor, Cannabinoid, CB2/agonists
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-883378

ABSTRACT

Objective:To determine the effect of rice bran extract (RBE) in combination with doxorubicin on 4T1 triple-negative breast cancer cells and NIH-3T3 cells. Methods:RBE was obtained by maceration with n-hexane. The phytochemical profile of RBE was observed using high-performance liquid chromatography. Cytotoxic effect of RBE was evaluated through MTT assay. In addition, flow cytometry was used for cell cycle and apoptosis analysis. Cellular senescence was observed using SA-β-Gal assay and intracellular reactive oxygen species (ROS) levels were evaluated using DCFDA staining. The pro-oxidant property of RBE was also evaluated through 1-chloro-2,4-dinitrobenzene spectrophotometry and molecular docking. Results:RBE was obtained with a yield of 18.42% w/w and contained tocotrienols as the major compound. RBE exerted no cytotoxic effect on 4T1 and NIH-3T3 cells. However, RBE in combination with doxorubicin decreased 4T1 cell viability synergistically (combination index<0.9) and induced apoptosis and senescence on 4T1 cells. RBE significantly decreased senescence in doxorubicin-treated NIH-3T3 cells. Additionally, RBE did not increase ROS levels in doxorubicin-treated 4T1 cells. Meanwhile, the combination of RBE and doxorubicin reduced ROS levels in NIH-3T3 cells. RBE significantly reduced glutathione-S-transferase activity and alpha-tocotrienol interacted with glutathione-S-transferase in the glutathione binding site. Conclusions:Rice bran may be used as a co-chemotherapeutic agent to improve the therapeutic effectiveness of doxorubicin while protecting against the cellular senescence effects of doxorubicin on healthy cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...