Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 33: 106567, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304964

ABSTRACT

Serum, urine and tissue from a rat model of chronic kidney disease (CKD) were analysed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics methods, and compared with samples from sham operated rats. Both urine and serum were sampled at multiple timepoints, and the results have been reported elsewhere (https://doi.org/10.1007/s11306-019-1569-3[1]). The data could be useful to researchers working with human CKD or rat models of the disease. In addition, several different types of NMR spectra were recorded, including 1D NOESY, CPMG, and 2D J-resolved spectra, and the data could be useful for method comparison and algorithm development, both in terms of NMR spectroscopy and multivariate analysis.

2.
Metabolomics ; 16(1): 7, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31858270

ABSTRACT

BACKGROUND: In our metabolomics studies we have noticed that repeated NMR acquisition on the same sample can result in altered metabolite signal intensities. AIMS: To investigate the reproducibility of repeated NMR acquisition on selected metabolites in serum and plasma from two large human metabolomics studies. METHODS: Two peak regions for each metabolite were integrated and changes occurring after reacquisition were correlated. RESULTS: Integral changes were generally small, but serum citrate signals decreased significantly in some samples. CONCLUSIONS: Several metabolite integrals were not reproducible in some of the repeated spectra. Following established protocols, randomising analysis order and biomarker validation are important.


Subject(s)
Citric Acid/blood , Magnetic Resonance Spectroscopy , Metabolomics/methods , Biomarkers/blood , Citric Acid/chemistry , Humans , Plasma/chemistry , Reproducibility of Results , Serum/chemistry
3.
Metabolomics ; 15(8): 112, 2019 08 17.
Article in English | MEDLINE | ID: mdl-31422467

ABSTRACT

INTRODUCTION: Progressive chronic kidney disease (CKD) is an important cause of morbidity and mortality. It has a long asymptomatic phase, where routine blood tests cannot identify early functional losses, and therefore identifying common mechanisms across the many etiologies is an important goal. OBJECTIVES: Our aim was to characterize serum, urine and tissue (kidney, lung, heart, spleen and liver) metabolomics changes in a rat model of CKD. METHODS: A total of 17 male Wistar rats underwent 5/6 nephrectomy, whilst 13 rats underwent sham operation. Urine samples were collected weekly, for 6 weeks; blood was collected at weeks 0, 3 and 6; and tissue samples were collected at week 6. Samples were analyzed on a nuclear magnetic resonance spectroscopy platform with multivariate and univariate data analysis. RESULTS: Changes in several metabolites were statistically significant. Allantoin was affected in all compartments. Renal asparagine, creatine, hippurate and trimethylamine were significantly different; in other tissues creatine, dimethylamine, dimethylglycine, trigonelline and trimethylamine were significant. Benzoate, citrate, dimethylglycine, fumarate, guanidinoacetate, malate, myo-inositol and oxoglutarate were altered in urine or serum. CONCLUSION: Although the metabolic picture is complex, we suggest oxidative stress, the gut-kidney axis, acid-base balance, and energy metabolism as promising areas for future investigation.


Subject(s)
Disease Models, Animal , Metabolomics , Nephrectomy , Renal Insufficiency, Chronic/metabolism , Animals , Magnetic Resonance Spectroscopy , Male , Rats , Rats, Wistar , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/urine
4.
J Clin Med ; 7(11)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469433

ABSTRACT

Cardiac surgery with cardiopulmonary bypass (CPB) causes an acute lung ischemia-reperfusion injury, which can develop to pulmonary dysfunction postoperatively. This sub-study of the Pulmonary Protection Trial aimed to elucidate changes in arterial blood gas analyses, inflammatory protein interleukin-6, and metabolites of 90 chronic obstructive pulmonary disease patients following two lung protective regimens of pulmonary artery perfusion with either hypothermic histidine-tryptophan-ketoglutarate (HTK) solution or normothermic oxygenated blood during CPB, compared to the standard CPB with no pulmonary perfusion. Blood was collected at six time points before, during, and up to 20 h post-CPB. Blood gas analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance spectroscopy were used, and multivariate and univariate statistical analyses were performed. All patients had decreased gas exchange, augmented inflammation, and metabolite alteration during and after CPB. While no difference was observed between patients receiving oxygenated blood and standard CPB, patients receiving HTK solution had an excess of metabolites involved in energy production and detoxification of reactive oxygen species. Also, patients receiving HTK suffered a transient isotonic hyponatremia that resolved within 20 h post-CPB. Additional studies are needed to further elucidate how to diminish lung ischemia-reperfusion injury during CPB, and thereby, reduce the risk of developing severe postoperative pulmonary dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...