Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Water Res ; 260: 121945, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908315

ABSTRACT

N-nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct that forms during chloramine disinfection of municipal wastewater effluents which are increasingly used to augment drinking water supplies due to growing water scarcity. Knowledge of wastewater NDMA precursors is limited and the known pool of NDMA precursors has not closed the mass balance between precursor loading, precursor NDMA yield, and formed NDMA. Benzalkonium chlorides (BACs) are the most prevalent quaternary ammonium surfactants and have antimicrobial properties. The extensive utilization of BACs in household, commercial and industrial products has resulted in their detection in wastewater at elevated concentrations. We report the formation of a potent NDMA precursor, benzyldimethylamine (BDMA) from the biodegradation of BACs during activated sludge treatment. BDMA formation and NDMA formation potential (FP) were functions of BAC and mixed liquor suspended solids concentration at circumneutral pH, and the microbial community source. Sustained exposure to microorganisms reduced NDMA FP through successive dealkylation of BDMA to less potent precursors. BAC alkyl chain length (C8 - C16) had little impact on NDMA FP and BDMA formation because chain cleavage occurred at the C-N bond. Wastewater effluents collected from three facilities contained BDMA from 15 to 106 ng/L, accounting for an estimated 4 to 38 % of the NDMA precursor pool.

2.
Sci Total Environ ; 905: 166971, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37699477

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals that occur ubiquitously in the environment and have been linked to numerous adverse health effects in humans and aquatic organisms. Although numerous environmental monitoring studies have been conducted, only one has evaluated PFAS in surface waters of the northwestern Great Basin, which features unique topography that results in dozens of endorheic basins and terminal lakes with no natural outlet, where PFAS may accumulate. To close this knowledge gap, we evaluated the occurrence of PFAS in grab samples from 15 lakes (headwater and terminal lakes) and 10 rivers in the Great Basin located in Nevada and California of the United States. PFAS and organofluorine were quantified by liquid chromatography tandem mass spectroscopy (LC-MS/MS) and combustion ion chromatography, respectively. The highest concentrations of PFAS occurred in samples taken near sites with known or suspected prior aqueous film forming foam (AFFF) application (~20 to 4754 ng/L). Samples near wastewater treatment plants and in urban areas also tended to have PFAS concentrations greater than those measured in remote, less anthropogenically influenced areas (~2 to 15 ng/L, <3 ng/L respectively). In limited snapshot sampling events PFAS appeared to accumulate in terminal lakes to some extent; in-lake concentrations were two to five times greater than those of their inflows. Fluorotelomer sulfonates were present downstream of a known AFFF application area likely to have had fluorotelomer-based foams applied to it, and the concentrations decayed in a predictable manner, suggesting they may be used as an indicator of PFAS transport away from an AFFF source. In all but two samples, organofluorine concentrations were greater than the sum of targeted PFAS (on a F basis) (median of 0.6 % of organofluorine identified via LC-MS/MS), although there was considerable variability in organofluorine measured in replicate samples.

3.
Water Res ; 244: 120474, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37611358

ABSTRACT

We investigated short (first post-fire precipitation)- and long-term (11-month) impacts of the Caldor and Mosquito Fires (2021 and 2022) on water quality, dissolved organic matter, and disinfection byproduct (DBP) precursors in burned and adjacent unburned watersheds. Both burned watersheds experienced water quality degradation compared to their paired unburned watersheds, including increases in dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and DBP precursors from precipitation events. DBP precursor concentrations during storm events were greater in the Caldor Fire's burned watershed than in the unburned watershed; precursors of trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloacetamides (HAMs) were 533 µg/L, 1,231 µg/L, 64 and 58 µg/L greater. The burned watershed of the Mosquito Fire also had greater median concentrations of THM (44 µg/L), HAA (37 µg/L), HAN (7 µg/L), and HAM (13 µg/L) precursors compared to the unburned watershed during a storm immediately following the fire. Initial flushes from both burned watersheds formed greater concentrations of more toxic DBPs, such as HANs and HAMs. The Caldor Fire burn area experienced a rain-on-snow event shortly after the fire which produced the greatest degradation of water quality of all seasons/precipitation events/watersheds studied. Over the long term, statistical analysis revealed that DOC and DON values in the burned watershed of the Caldor Fire remained higher than the unburned control (0.98 mg C/L and 0.028 mg N/L, respectively). These short and long-term findings indicate that wildfires present potential treatment challenges for public water systems outside of the two studied here.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Wildfires , Disinfection , Rivers , Nitrogen/analysis , Dissolved Organic Matter , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Disinfectants/analysis
4.
Environ Sci Technol ; 57(15): 6179-6187, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37018767

ABSTRACT

The thermal decomposition products and mechanisms of per- and polyfluoroalkyl substances (PFASs) are poorly understood despite the use of thermal treatment to remediate PFAS-contaminated media. To identify the thermal decomposition products and mechanisms of perfluorocarboxylic acids (PFCAs), gaseous perfluoropropionic acid (PFPrA) and perfluorobutyric acid (PFBA) were decomposed in nitrogen and oxygen at temperatures from 200 to 780 °C. In nitrogen (i.e., pyrolysis), the primary products of PFPrA were CF2═CF2, CF3CF2H, and CF3COF. CF3CF═CF2 was the dominant product of PFBA. These products are produced by HF elimination (detected as low as 200 °C). CF4 and C2F6 were observed from both PFCAs, suggesting formation of perfluorocarbon radical intermediates. Pyrolysis products were highly thermally stable, resulting in poor defluorination. In oxygen (i.e., combustion), the primary product of both PFPrA and PFBA below 400 °C was COF2, but the primary product was SiF4 above 600 °C due to reactions with the quartz reactor. Oxygen facilitated thermal defluorination by reacting with PFCAs and with pyrolysis products (i.e., fluoroolefins and fluorocarbon radicals). Platinum improved combustion of PFCAs to COF2 at temperatures as low as 200 °C, while quartz promoted the combustion of PFCAs into SiF4 at higher temperatures (>600 °C), highlighting the importance of surface reactions that are not typically incorporated into computational approaches.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Gases , Quartz , Fluorocarbons/analysis , Oxygen , Nitrogen
5.
Sci Total Environ ; 856(Pt 1): 159027, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36167135

ABSTRACT

Organic matter reacts with chlorine forming disinfection byproducts (DBPs) including trihalomethanes (THMs), haloacetamides (HAMs), haloacetic acids (HAAs), and haloacetonitriles (HANs). Filter backwash water (FBW) is either released back to the environment or recycled to the head of the treatment plant after solids settling and the remaining dissolved organic matter is a significant pool of DBP precursors that are not well understood. We characterized dissolved organic matter in FBW from 10 treatment plants and low molecular weight (MW < 1 kDa) organic matter contributed the most to DBP formation. We demonstrated overall similarity of the molecular composition (e.g., elemental ratios, m/z, DBE) of the 10 samples of FBW by Fourier transform ion cyclotron resonance mass spectrometry. Aromatic and more highly oxidized compounds preferentially reacted with chlorine, forming DBPs. Low MW (<450 Da) aliphatic compounds, and highly unsaturated and phenolic compounds were the primary precursors of THMs, HANs, and HAMs, and the formation potentials (FPs) of these groups of DBPs were correlated with multiple individual molecular formulae. HAA FPs were correlated with low MW, highly unsaturated and phenolic compounds. These advances in the understanding of the molecular composition of DBP precursors in FBW may develop the effective strategies to control DBP formation and limit impacts on the quality of finished water, and can be expanded to understanding DBP precursors in drinking water sources.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Disinfection , Chlorine/chemistry , Drinking Water/analysis , Disinfectants/analysis , Halogenation , Water Pollutants, Chemical/analysis , Trihalomethanes/analysis
6.
Environ Pollut ; 315: 120367, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36240970

ABSTRACT

A model was developed to simulate the pH-dependent speciation and fate of ionizable pharmaceutical and personal care products (iPPCPs) in soils and their plant uptake during thedt application of reclaimed wastewater to agricultural soils. The simulation showed that pH plays an important role in regulating the plant uptake of iPPCPs, i.e., ibuprofen (IBU; with a carboxylic group), triclosan (TCS; phenolic group), and fluoxetine (FXT; amine group) as model compounds. It took 89-487 days for various iPPCPs to reach the steady-state concentrations in soil and plant tissues. The simulated steady-state concentrations of iPPCPs in plant tissues at pH 9 is 2.2-2.3, 2.5-2.6, and 1.07-1.08 times that at pH 5 for IBU, TCS, and FXT, respectively. Assuming sorption only for neutral compounds led to miscalculation of iPPCPs concentrations in plant tissues by up to one and half orders magnitude. Efflux of compounds in soil, lettuce leaf, and soybean pods was primarily contributed by their degradation in soil and dilution due to plant tissue growth. Overall, the results demonstrated the importance of considering pH and speciation of iPPCPs when simulating their fate in the soil-plant system and plant uptake.


Subject(s)
Cosmetics , Soil Pollutants , Triclosan , Soil/chemistry , Soil Pollutants/analysis , Cosmetics/analysis , Triclosan/analysis , Pharmaceutical Preparations , Hydrogen-Ion Concentration
7.
Environ Sci Technol ; 56(9): 5355-5370, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35446563

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Charcoal , Fluorocarbons/analysis , Humans , Incineration , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 285: 131408, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34242983

ABSTRACT

Endorheic lakes (or terminal lakes, TLs) have no natural outlet other than evaporation and slow infiltration. Some TLs receive reclaimed wastewater which contains poorly removed trace organic contaminants (TrOCs). To determine if TLs accumulate TrOCs we conducted a preliminary assessment of the occurrence of ten TrOCs in three TLs receiving reclaimed wastewater and one TL which does not directly receive reclaimed wastewater. Five of ten TrOCs (carbamazepine, DEET, fluoxetine, primidone, and trimethoprim) were present in all four TLs' surface waters (~0.3-1109 ng/L), six (caffeine, carbamazepine, DEET, diphenhydramine, primidone, and trimethoprim) were present in sediment samples (0.1-77 ng/gDW) and in soil samples (0.1-137 ng/gDW). Concentrations of caffeine, carbamazepine, diphenhydramine, fluoxetine and meprobamate were significantly higher in TLs receiving wastewater from a secondary treatment plant compared to those TLs which received tertiary treated wastewater. Carbamazepine, fluoxetine, sulfamethoxazole, and trimethoprim were present at concentrations greater than is typical of other U.S. freshwater lakes, but other TrOC concentrations were present at lower concentrations than in other freshwater lakes. We conclude that some TrOCs may accumulate in TLs, but to a lesser extent than would be expected based on the accumulation of dissolved constituents alone, which indicates that there are other unidentified processes in TLs that contribute to TrOC losses. Other TLs across the globe may have similar levels of TrOCs due to anthropogenic influence and treated wastewater inputs.


Subject(s)
Lakes , Water Pollutants, Chemical , Carbamazepine , Sulfamethoxazole , Wastewater/analysis , Water Pollutants, Chemical/analysis
9.
Water Environ Res ; 93(10): 1837-1845, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34153156

ABSTRACT

Prior measurements at bench scale revealed that waterless urinal cartridges containing oily sealant fluids are capable of partitioning pharmaceuticals from urine and therefore reducing their concentration in wastewater. We sought to measure pharmaceutical removal from in-use waterless urinals. We developed a method to quantify pharmaceuticals in the sealant phase, which resulted in 79 ± 30% and 71 ± 30% recovery of eight pharmaceuticals from two sealant fluids, respectively. The method was applied to sealant samples collected over three weeks from in-use waterless urinals on a university campus. Six of eight pharmaceuticals were present in the sealant samples from 1.4 µg/L to 241 µg/L. Loads of the six pharmaceuticals detected in the sealants were removed from the receiving wastewater from 0.02 µg/day to 3.4 µg/day across the sampling period. The concentration of the pharmaceuticals were similar over time, indicating rapid saturation and washout of the sealant. We also observed relatively rapid loss of sealant at maintenance intervals consistent with the manufacturer's instructions. These findings indicate that while waterless urinals do remove some pharmaceuticals from the wastewater stream, meaningful changes to wastewater concentrations will only result if the sealant fluid and/or the urinal cartridge are significantly modified. PRACTITIONER POINTS: We developed a quantification method for pharmaceuticals in oily waterless urinal sealants. Pharmaceuticals were present at relatively low concentrations in the sealant phase of two in-use waterless urinals. We identify engineering challenges that must be overcome to meaningfully reduce pharmaceutical loads in wastewater with waterless urinals.


Subject(s)
Bathroom Equipment , Pharmaceutical Preparations , Water Pollutants, Chemical , Environmental Monitoring , Humans , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
10.
Water Res ; 194: 116964, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33652228

ABSTRACT

Drinking water treatment plants (DWTPs) produce filter backwash water (FBW) and sedimentation sludge water (SSW) that may be partially recycled to the head of DWTPs. The impacts of key disinfection conditions, water quality parameters (e.g., disinfection times, disinfectant types and doses, and pH values), and bromide concentration on controlling the formation of trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloacetamides (HAMs) during disinfection of FBW and SSW were investigated. Concentrations of most disinfection byproducts (DBPs) and associated calculated toxicity increased with extended chlorination for both FBW and SSW. During chlorination of both FBW and SSW, elevated chlorine doses significantly increased THM yields per unit dissolved organic carbon (DOC), but decreased HAN and HAM yields, with minimum effect on HAA yields. Chloramine disinfection effectively inhibited C-DBP formation but promoted N-DBPs yields, which increased with chloramine dose. Calculated toxicities after chloramination increased with chloramine dose, which was opposite to the trend found after free chlorine addition. An examination of pH effects demonstrated that C-DBPs were more readily generated at alkaline pH (pH=8), while acidic conditions (pH=6) favored N-DBP formation. Total DBP concentrations increased at higher pH levels, but calculated DBP toxicity deceased due to lower HAN and HAM concentrations. Addition of bromide markedly increased bromo-THM and bromo-HAN formation, which are more cytotoxic than chlorinated analogues, but had little impact on the formation of HAAs and HAMs. Bromide incorporation factors (BIFs) for THMs and HANs from both water samples all significantly increased as bromide concentrations increased. Overall, high bromide concentrations increased the calculated toxicity values in FBW and SSW after chlorination. Therefore, while currently challenging, technologies capable of removing bromide should be explored as part of a strategy towards controlling cumulative toxicity burden (i.e., hazard) while simultaneously lowering individual DBP concentrations (i.e., exposure) to manage DBP risks in drinking water.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/analysis , Disinfection , Halogenation , Sewage , Trihalomethanes , Water Pollutants, Chemical/analysis
11.
Environ Pollut ; 276: 116532, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676149

ABSTRACT

Wastewater reclamation and reuse for agriculture have attracted a great deal of interest, due to water stress caused by rapid increase in human population and agricultural water demand as well as climate change. However, the application of treated wastewater for irrigation can lead to the accumulation of pharmaceuticals and personal care products (PPCPs) in the agricultural crops, grazing animals, and consequently to human dietary exposure. In this study, a model was developed to simulate the fate of five PPCPs; triclosan (TCS), carbamazepine (CBZ), naproxen (NPX), gemfibrozil (GFB), and fluoxetine (FXT) during wastewater reuse for agriculture, and potential human dietary exposure and health risk. In a reclaimed wastewater-irrigated grazing farm growing alfalfa, it took 100-535 days for PPCPs to achieve the steady-state concentrations of 1.43 × 10-6, 4.73 × 10-5, 1.17 × 10-6, 1.53 × 10-5, and 7.38 × 10-6 mg/kg for TCS, CBZ, NPX, GFB, and FXT in soils, respectively. The accumulated concentration of PPCPs in the plant (alfalfa) and grazing animals (beef) ranged 2.86 × 10-7- 4.02 × 10-3 and 4.39 × 10-15- 6.27 × 10-7 mg/kg, respectively. Human dietary exposure to these compounds through beef consumption was calculated to be 1.67 × 10-18- 1.74 × 10-10 mg/kg bodyweight/d, much lower than the acceptable daily intake (ADI). Similar results were obtained for a 'typical' reclaimed wastewater irrigated farm based on the typical setup using our model. Screening analysis showed that PPCPs with relatively high LogD value and lower ratios of degradation rate (in soils) to plant uptake have a greater potential to be transferred to humans and cause potential health risks. We established a modeling method for evaluating the fate and human health effects of PPCPs in reclaimed wastewater reuse for the agricultural system and developed an index for screening PPCPs with high potential to accumulate in agricultural products. The model and findings are valuable for managing water reuse for irrigation and mitigating the harmful effects of PPCPs.


Subject(s)
Cosmetics , Pharmaceutical Preparations , Soil Pollutants , Water Pollutants, Chemical , Agricultural Irrigation , Agriculture , Humans , Soil Pollutants/analysis , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
12.
Water Res ; 186: 116346, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32866929

ABSTRACT

Haloacetonitriles (HANs) and haloacetamides (HAMs) are nitrogenous disinfection byproducts that are present in filter backwash water (FBW) and sedimentation sludge water (SSW). In many cases FBW and SSW are recycled to the head of drinking water treatment plants. HAN and HAM concentrations in FBW and SSW, without additional oxidants, ranged from 6.8 to 11.6 nM and 2.9 to 3.6 nM of three HANs and four HAMs, respectively. Upon oxidant addition to FBW and SSW under formation potential conditions, concentrations for six HANs and six HAMs ranged from 92.2 to 190.4 nM and 42.2 to 95.5 nM, respectively. Therefore, at common FBW and SSW recycle rates (2 to 10% of treated water flows), the precursor levels in these recycle waters should not be ignored because they are comparable to levels present in finished water. Brominated HAN and chlorinated HAM were the dominant species in FBW and SSW, respectively. The lowest molecular weight ultrafiltration fraction (< 3 kDa) contributed the most to HAN and HAM formations. The hydrophilic (HPI) organic fraction contributed the greatest to HAN precursors in sand-FBW and SSW and were the most reactive HAM precursors in both sand- or carbon-FBWs. Fluorescence revealed that aromatic protein-like compounds were dominant HAN and HAM precursors. Therefore, strategies that remove low molecular weight hydrophilic organic matter and aromatic protein-like compounds will minimize HAN and HAM formations in recycled FBW and SSW.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfectants/analysis , Disinfection , Halogenation , Sewage , Water Pollutants, Chemical/analysis
13.
Sci Total Environ ; 743: 140845, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758854

ABSTRACT

Detection of metal nanoparticles (NPs) in the environment is an analytical challenge of interest due to increasing use of nanomaterials in consumer and industrial products. Detecting NPs associated with human activities is affected by both the magnitude and variation in background concentrations of natural NPs. In this work, we investigated the potential release of titanium dioxide (TiO2) NPs from sunscreen in three recreational rivers, with a time-intensive sampling regime on one river, in order to determine the range and variability of natural, background titania (Ti). Conventional ICP analysis for total metal concentrations, single particle ICP-MS for NP concentrations, and electron microscopy aided in assessing mineralogical morphology and composition. Oxybenzone, a widely-used organic sunscreen, was measured and used as a surrogate for the intensity of recreational activity in the water. Statistically significant increases in Ti concentrations were observed in Clear Creek, CO during one recreation period, but the significance of other instances of recreation-associated Ti increases was unclear, in part due to storm impacts on the natural suspended sediment load of the stream. A comparison of three recreational rivers showed increases in both Ti mass concentrations and NP sizes occur during recreation in both Clear Creek, CO and the Salt River, AZ, but no detectable changes in the Truckee River, NV. However, size distributions were variable in background samples, which make the significance of differences observed during recreation unclear. These results underline that the release of engineered nanoparticles to a natural system cannot be detected without a well-defined background, including measures of its variability during the study period.


Subject(s)
Metal Nanoparticles , Nanoparticles , Water Pollutants, Chemical/analysis , Humans , Rivers , Sunscreening Agents/analysis , Titanium/analysis
14.
Sci Total Environ ; 744: 140698, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32693273

ABSTRACT

Several studies have assessed the presence of trace organic contaminants (TrOCs) in reclaimed wastewater and their uptake into crops but there are limited data from field-scale studies. In this research, we studied the fate of 12 TrOCs in wastewater samples, 11 in plants and in soil pore water, and 10 in soil at an agricultural research farm, which was irrigated with reclaimed wastewater for more than 10 years. First, we examined the presence of the compounds in the primary, secondary, and treated effluent of a regional water reclamation facility which provides the irrigation water. The agricultural field produced alfalfa, and we measured the contaminants in the alfalfa, soil, and pore water. Reclaimed wastewater contained 11 of 12 TrOCs, with concentrations ranging from 26 ± 9 ng/L (DEET) to 1539 ± 1899 ng/L (trimethoprim). Atrazine was not detected. Pore water collected during non-irrigating periods contained all analyzed TrOCs, from 3 ± 0.1 ng/L (diphenhydramine) to 343 ± 360 ng/L (primidone). TrOCs measured in pore water samples indicated that they may leach to shallow groundwater even when fields are not being irrigated. Soils from 0 to 60 cm contained nine TrOCs from below the reporting limit (fluoxetine) to 329 ng/g (carbamazepine). Atrazine was not detected. TrOC concentrations decreased with increasing soil depth, except carbamazepine, which was more recalcitrant. Nine TrOCs were present in the shoots and leaves of alfalfa grown in the reclaimed wastewater irrigated plots, at concentrations ranging from <1 ng/g (diphenhydramine and fluoxetine) to 49 ng/g dry weight (carbamazepine). Atrazine and caffeine were not detected. We estimated that a maximum of 14% of DEET from the reclaimed wastewater was accumulated in alfalfa. Overall, despite some accumulation of TrOCs in the soil, alfalfa uptake was limited, which results in low exposure to foraging animals.

15.
Sci Total Environ ; 739: 139756, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32540653

ABSTRACT

The geographical and temporal distribution of precipitation has and is continuing to change with changing climate. Shifting precipitation will likely require adaptations to irrigation strategies, and because 35% of rainfed and 60% of irrigated agriculture is within 20 km of a wastewater treatment plant, we expect that the use of treated wastewater (e.g., reclaimed wastewater) for irrigation will increase. Treated wastewater contains various organic and inorganic substances that may have beneficial (e.g., nitrate) or deleterious (e.g., salt) effects on plants, which may cause a change in global food productivity should a large change to treated wastewater irrigation occur. We reviewed literature focused on food crop growth inhibition or promotion resulting from exposure to xenobiotics, engineered nanoparticles, nitrogen, and phosphorus, metals, and salts. Xenobiotics and engineered nanoparticles, in nearly all instances, were detrimental to crop growth, but only at concentrations much greater than would be currently expected in treated wastewater. However, future changes in wastewater flow and use of these compounds and particles may result in phytotoxicity, particularly for xenobiotics, as some are present in wastewater at concentrations within approximately an order of magnitude of concentrations which caused growth inhibition. The availability of nutrients present in treated wastewater provided the greatest overall benefit, but may be surpassed by the detrimental impact of salt in scenarios where either high concentrations of salt are directly deleterious to plant development (rare) or in scenarios where soils are poorly managed, resulting in soil salt accumulation.


Subject(s)
Agricultural Irrigation , Wastewater/analysis , Agriculture , Soil , Water
16.
Environ Sci Technol ; 54(10): 6344-6352, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32321246

ABSTRACT

We investigated the potential for waterless urinal sealants fluids to remove pharmaceuticals from urine. 1H NMR, FTIR, and GC/MS characterization of the fluids indicated that they are mostly composed of aliphatic compounds. Removal of ethinyl estradiol was >40% for two of the three sealant fluids during simulated urination to a urinal cartridge but removal of seven other compounds with greater hydrophilicity was <30%. At equilibrium with Milli-Q water, ≥ 89% partitioning to the sealant phase was observed for three compounds with pH adjusted log Kow (log Dow) > 3.5. At equilibrium with synthetic urine, removal ranged widely from 2% to 100%. Kow was poorly correlated with removal for both matrices at equilibrium, but Dow was correlated with removal from synthetic urine for two of the three sealants, indicating that ionization and hydrophilicity control partitioning between the urine and sealant phases. To improve removal during urination, where equilibrium is not achieved, we increased the hydraulic retention time 100-fold over that of typical male urination. Removal of specific hydrophobic compounds increased, indicating that both hydrophobicity and kinetics control removal. Removal of ethinyl estradiol was ≥90% for all sealants in the increased hydraulic retention time experiment, demonstrating the potential for implementation to female urinals.


Subject(s)
Bathroom Equipment , Gas Chromatography-Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Kinetics , Water
17.
Environ Sci Process Impacts ; 22(3): 708-718, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31894210

ABSTRACT

The cyto- and genotoxic potencies of disinfection by-products (DBPs) have been evaluated in published literature by measuring the response of exposed Chinese hamster ovary cells. In recent publications, DBP concentrations divided by their individual toxicity indices are summed to predict the relative toxicity of a water sample. We hypothesized that the omission or inclusion of certain DBPs over others is equivalent to statistical sampling bias and may result in biased conclusions. To test this hypothesis, we removed or added actual or simulated DBP measurements to that of published studies which evaluated granular activated carbon as a treatment to reduce the relative toxicity of the effluent. In several examples, it was possible to overturn the conclusions (i.e., activated carbon is detrimental or beneficial in reducing toxicity) by preferentially including specific DBPs. In one example, removing measured haloacetaldehydes caused the predicted cytotoxicity of a treated sample to decrease by up to 47%, reversing the initial conclusion that activated carbon increased the toxicity of the water. We also discuss measurements of statistical error, which are rarely included in publications related to predicted toxicity, but strongly influence the outcomes. Finally, we discuss future research needs in the light of these and other concerns.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , CHO Cells , Cricetinae , Cricetulus , Disinfection , Selection Bias , Uncertainty
18.
Nanomaterials (Basel) ; 9(5)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052363

ABSTRACT

Many analytical techniques have limited sensitivity to quantify multi-walled carbon nanotubes (MWCNTs) at environmentally relevant exposure concentrations in wastewaters. We found that trace metals (e.g., Y, Co, Fe) used in MWCNT synthesis correlated with MWCNT concentrations. Because of low background yttrium (Y) concentrations in wastewater, Y was used to track MWCNT removal by wastewater biomass. Transmission electron microscopy (TEM) imaging and dissolution studies indicated that the residual trace metals were strongly embedded within the MWCNTs. For our specific MWCNT, Y concentration in MWCNTs was 76 µg g-1, and single particle mode inductively coupled plasma mass spectrometry (spICP-MS) was shown viable to detect Y-associated MWCNTs. The detection limit of the specific MWCNTs was 0.82 µg L-1 using Y as a surrogate, compared with >100 µg L-1 for other techniques applied for MWCNT quantification in wastewater biomass. MWCNT removal at wastewater treatment plants (WWTPs) was assessed by dosing MWCNTs (100 µg L-1) in water containing a range of biomass concentrations obtained from wastewater return activated sludge (RAS) collected from a local WWTP. Using high volume to surface area reactors (to limit artifacts of MWCNT loss due to adsorption to vessel walls) and adding 5 g L-1 of total suspended solids (TSS) of RAS (3-h mixing) reduced the MWCNT concentrations from 100 µg L-1 to 2 µg L-1. The results provide an environmentally relevant insight into the fate of MWCNTs across their end of life cycle and aid in regulatory permits that require estimates of engineered nanomaterial removal at WWTPs upon accidental release into sewers from manufacturing facilities.

19.
Water Res ; 150: 466-472, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30576897

ABSTRACT

N-nitrosodimethylamine (NDMA) is a chloramine disinfection by-product, and its formation in drinking waters can increase due to the addition of cationic polydiallyldimethylammonium chloride (polyDADMAC). PolyDADMAC is a cationic polymer added as a coagulant or coagulant aid to enhance turbidity removal during sedimentation and filtration. This paper answers two central questions to understanding the nature of the NDMA precursors in polyDADMAC. First, what is the reactivity of different molecular weight (MW) fractions of polyDADMAC with chloramines? NDMA formation potential (NDMAFP) and kinetic experiments with chloramines were conducted for non-fractionated (raw) and size-excluded fractions (<3K, 3-10K, and >10K Da.) of polyDADMAC. The lower MW fraction (<3K Da.) of polyDADMAC solutions was responsible for forming 64 ±â€¯6% of the NDMA, despite containing only 8.7 and 9.8% of the carbon or nitrogen present in the bulk polymer. The chloramine demand kinetics of the lowest MW fraction were also >2× faster than the higher MW fractions. Therefore, in a water treatment application the lower MW polyDADMAC likely contributes to most of the NDMA attributed to the use of polyDADMAC. The second question was: can 1H and 13C nuclear magnetic resonance spectroscopy (NMR) be used to characterize the molecular structures in polyDADMAC that react with chloramines? A peak for 1H NMR dimethylamine (DMA), a known low MW NDMA precursor, was found in a commercial polyDADMAC solution and decreased upon chloramination. The estimated DMA alone could not account for the observed NDMAFP, indicating the presence of other low MW precursors. Diffusion order spectroscopy (DOSY) NMR also showed multiple lower MW organics in polyDADMAC that change upon chloramination, including a 1.5× decrease in MW, suggesting chloramines cleave CC or CN bonds. These reactions may produce intermediates responsible for NDMA formation. Polymer manufacturers could use NMR to synthesize polyDADMAC with less DMA and other low MW compounds that produce NDMA upon chloramination.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Disinfection , Molecular Weight
20.
Sci Total Environ ; 628-629: 1609-1616, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045577

ABSTRACT

It is difficult to relate intrinsic nanomaterial properties to their functional behavior in the environment. Unlike frameworks for dissolved organic chemicals, there are few frameworks comparing multiple and inter-related properties of engineered nanomaterials (ENMs) to their fate, exposure, and hazard in environmental systems. We developed and evaluated reproducibility and inter-correlation of 12 physical, chemical, and biological functional assays in water for eight different engineered nanomaterials (ENMs) and interpreted results using activity-profiling radar plots. The functional assays were highly reproducible when run in triplicate (average coefficient of variation [CV]=6.6%). Radar plots showed that each nanomaterial exhibited unique activity profiles. Reactivity assays showed dissolution or aggregation potential for some ENMs. Surprisingly, multi-walled carbon nanotubes (MWCNTs) exhibited movement in a magnetic field. We found high inter-correlations between cloud point extraction (CPE) and distribution to sewage sludge (R2=0.99), dissolution at pH8 and pH4.9 (R2=0.98), and dissolution at pH8 and zebrafish mortality at 24hpf (R2=0.94). Additionally, most ENMs tend to distribute out of water and into other phases (i.e., soil surfaces, surfactant micelles, and sewage sludge). The activity-profiling radar plots provide a framework and estimations of likely ENM disposition in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...