Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 15: 1388866, 2024.
Article in English | MEDLINE | ID: mdl-39148611

ABSTRACT

In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the 'orphan' definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of 'climate-ready crops'. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.

2.
Phytochemistry ; 213: 113783, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406790

ABSTRACT

Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.


Subject(s)
Atriplex , Plant Proteins , Plant Proteins/metabolism , Atriplex/genetics , Atriplex/metabolism , Amino Acid Sequence , Plants/metabolism , Protein Structure, Secondary
3.
Plant Physiol Biochem ; 201: 107832, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327648

ABSTRACT

The control of optimal root growth and plant stress responses depends largely on a variety of phytohormones among which auxin and brassinosteroids (BRs) are the most influential. We have previously reported that the durum wheat type 1 protein phosphatase TdPP1 participates in the control of root growth by modulating BR signaling. In this study, we pursue our understanding of how TdPP1 fulfills this regulatory function on root growth by evaluating the physiological and molecular responses of Arabidopsis TdPP1 over-expressing lines to abiotic stresses. Our results showed that when exposed to 300 mM Mannitol or 100 mM NaCl, the seedlings of TdPP1 over-expressors exhibit modified root architecture with higher lateral root density, and longer root hairs concomitant with a lower inhibition of the primary root growth. These lines also exhibit faster gravitropic response and a decrease in primary root growth inhibition when exposed to high concentrations of exogenous IAA. On another hand, a cross between TdPP1 overexpressors and DR5:GUS marker line was performed to monitor auxin accumulation in roots. Remarkably, the TdPP1 overexpression resulted in an enhanced auxin gradient under salt stress with a higher accumulation in primary and lateral root tips. Moreover, TdPP1 transgenics exhibit a significant induction of a subset of auxin-responsive genes under salt stress conditions. Therefore, our results reveal a role of PP1 in enhancing auxin signaling to help shape greater root plasticity thus improving plant stress resilience.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Triticum/genetics , Triticum/metabolism , Arabidopsis Proteins/genetics , Osmotic Pressure , Plant Roots/metabolism , Gene Expression Regulation, Plant
4.
Biotechnol Appl Biochem ; 70(2): 593-602, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35789501

ABSTRACT

Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.


Subject(s)
Opuntia , Opuntia/chemistry , Hot Temperature , Plant Proteins/pharmacology , Plant Proteins/chemistry , Seeds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
5.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36009202

ABSTRACT

Plant catalases (CAT) are involved in the cellular scavenging of the reactive oxygen species during developmental processes and in response to abiotic and biotic stresses. However, little is known about the regulation of the CAT activity to ensure efficient antioxidant function. Using bioinformatic analyses, we showed that durum wheat catalase 1 (TdCAT1) harbors highly conserved cation-binding and calmodulin binding (CaMBD) domains which are localized at different positions of the protein. As a result, the catalytic activity of TdCAT1 is enhanced in vitro by the divalent cations Mn2+ and Fe2+ and to a lesser extent by Cu2+, Zn2+, and Mg2+. Moreover, the GST-pull down assays performed here revealed that TdCAT1 bind to the wheat CaM (TdCaM1.3) in a Ca2+-independent manner. Furthermore, the TdCaM1.3/Ca2+ complex is stimulated in a CaM-dose-dependent manner by the catalytic activity of TdCAT1, which is further increased in the presence of Mn2+ cations. The catalase activity of TdCAT1 is enhanced by various divalent cations and TdCaM1.3 in a Ca-dependent manner. Such effects are not reported so far and raise a possible role of CaM and cations in the function of CATs during cellular response to oxidative stress.

6.
Curr Microbiol ; 79(8): 239, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794407

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) arouse an increasing interest as an eco-friendly solution for improving crop tolerance to environmental stresses. In this study, we report the characterization of a novel halotolerant PGPR strain (named C2) identified in a screen of rhizospheric bacterial isolates from southeast of Tunisia. Phylogenetic analysis showed that strain C2 is most likely affiliated to the genus Siccibacter with Siccibacter turicensis as the closest species (98.19%). This strain was able to perform phosphate solubilization and production of indole acetic acid (IAA), siderophores, hydrogen cyanide (HCN), as well as different hydrolytic enzymes (proteases, amylases, cellulases, and lipases). The potential of strain C2 in enhancing salt stress tolerance of Hordeum vulgare was also investigated. Our greenhouse inoculation assays showed that strain C2 promotes barley growth in the presence of 400 mM NaCl by increasing biomass, root length, and chlorophyll contents. It has a positive effect on the photosynthetic efficiency, concomitantly with lower intercellular CO2 contents, compared to non-inoculated plants. Moreover, barley inoculation with strain C2 under salt stress, resulted in higher accumulation of proline and soluble sugars and alleviate the oxidative stress by decreasing hydrogen peroxide and malondialdehyde contents. Remarkably, this positive effect corroborates with a significant activation in the expression of a subset of barley stress responsive genes, including HVA1, HvDREB1, HvWRKY38 and HvP5CS. In summary, Siccibacter sp. strain C2 is able to enhance barley salt stress tolerance and should be leveraged in developing sustainable practices for cereal crop production.


Subject(s)
Hordeum , Phylogeny , Plant Development , Salt Tolerance/physiology , Stress, Physiological
7.
Plant Physiol Biochem ; 183: 1-8, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35526500

ABSTRACT

Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. Crosstalk between these two elements to control their uptake and homeostasis in plants has been previously demonstrated. However, the signaling molecule(s) required for the mechanisms underlying this interaction remain unknown. Phytic acid (PA), the main P storage form in plants, serves also as a signalling molecule in processes controlling plant growth and development as well as responses to different stimuli. In this study, we investigated the involvement of PA in the control of Zn-Pi homeostasis interaction in Arabidopsis. For this purpose, we used two classes of low phytic acid (lpa) lines: the inositol polyphosphate kinase 1 gene (ipk1-1) mutant and two transgenic lines expressing the bacterial phytase PHY-US417. The transgenic lines exhibit an enhanced root growth under Zn-deficiency compared to wild type (WT) and ipk1-1. In addition, higher Pi and Zn contents were detected in the lpa lines under standard and also deficient conditions (-Pi and -Zn). However, the activation of shoot Pi accumulation which occurs in WT in response to Zn depletion was not observed in the lpa lines. Finally, we noticed that the changes in Pi and Zn accumulation seem to be correlated with a tight regulation of Pi and Zn transporters in the lpa lines. All these findings underline a regulatory role of PA in the control of the Zn-Pi crosstalk but also open the door to possible involvement of additional unknown signaling molecules in this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Phosphates/metabolism , Phytic Acid , Plant Roots/metabolism , Plants/metabolism , Zinc/metabolism
8.
Biomolecules ; 12(2)2022 02 19.
Article in English | MEDLINE | ID: mdl-35204830

ABSTRACT

Dehydrins (DHNs) belong to the LEA (late embryogenesis abundant) family group II, that comprise four conserved motifs (the Y-, S-, F-, and K-segments) and are known to play a multifunctional role in plant stress tolerance. Based on the presence and order of these segments, dehydrins are divided into six subclasses: YnSKn, FnSKn, YnKn, SKn, Kn, and KnS. DHNs are rarely studied in halophytes, and their contribution to the mechanisms developed by these plants to survive in extreme conditions remains unknown. In this work, we carried out multiple genomic analyses of the conservation of halophytic DHN sequences to discover new segments, and examine their architectures, while comparing them with their orthologs in glycophytic plants. We performed an in silico analysis on 86 DHN sequences from 10 halophytic genomes. The phylogenetic tree showed that there are different distributions of the architectures among the different species, and that FSKn is the only architecture present in every plant studied. It was found that K-, F-, Y-, and S-segments are highly conserved in halophytes and glycophytes with a few modifications, mainly involving charged amino acids. Finally, expression data collected for three halophytic species (Puccinillia tenuiflora, Eutrema salsugenium, and Hordeum marinum) revealed that many DHNs are upregulated by salt stress, and the intensity of this upregulation depends on the DHN architecture.


Subject(s)
Hordeum , Plant Proteins , Gene Expression Regulation, Plant , Hordeum/metabolism , Phylogeny , Plant Proteins/metabolism , Salt-Tolerant Plants/genetics
9.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34638765

ABSTRACT

Brassinosteroids (BRs) play key roles in diverse plant growth processes through a complex signaling pathway. Components orchestrating the BR signaling pathway include receptors such as kinases, transcription factors, protein kinases and phosphatases. The proper functioning of the receptor kinase BRI1 and the transcription factors BES1/BZR1 depends on their dephosphorylation by type 2A protein phosphatases (PP2A). In this work, we report that an additional phosphatase family, type one protein phosphatases (PP1), contributes to the regulation of the BR signaling pathway. Co-immunoprecipitation and BiFC experiments performed in Arabidopsis plants overexpressing durum wheat TdPP1 showed that TdPP1 interacts with dephosphorylated BES1, but not with the BRI1 receptor. Higher levels of dephosphorylated, active BES1 were observed in these transgenic lines upon BR treatment, indicating that TdPP1 modifies the BR signaling pathway by activating BES1. Moreover, ectopic expression of durum wheat TdPP1 lead to an enhanced growth of primary roots in comparison to wild-type plants in presence of BR. This phenotype corroborates with a down-regulation of the BR-regulated genes CPD and DWF4. These data suggest a role of PP1 in fine-tuning BR-driven responses, most likely via the control of the phosphorylation status of BES1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brassinosteroids/biosynthesis , DNA-Binding Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Triticum/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Phosphoprotein Phosphatases/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Triticum/enzymology
10.
Comput Biol Chem ; 84: 107138, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31767506

ABSTRACT

There has been an increasing interest in Intrinsically Disordered Proteins (IDPs) ever since it was proven that they are ubiquitous and involved in key cellular functions. Interestingly, they have shown a large abundance in complete proteomes. In the current study, we have investigated the first large-scale study of the repertoire of IDPs in Triticum aestivum and Hordeum vulgare proteomes, in order to get insight into the biological roles of IDPs in both species. Results show that proteins in T. aestivum are significantly more disordered than those of H. vulgare. Moreover, the data revealed that DNA/RNA binding domains, co-factors, heme, metal ions binding domains, ATP/GTP binding proteins, ligands, linker domains and repeats, other domains typical to transcription factors such as zinc finger, F-box domain, homeodomain-like, l-domain like and chaperones, are predominantly present and co-occur in disordered proteins in T.aestivum and H.vulgare. The Gene Ontology analysis revealed that IDPs in T. aestivum and H. vulgare are mainly involved in regulation of cellular and biological processes up on response to stress. In future, this study may provide valuable information while considering IDPs in understanding the organism complexity and environmental adaptation.


Subject(s)
Hordeum/chemistry , Intrinsically Disordered Proteins/analysis , Plant Proteins/analysis , Proteome/analysis , Triticum/chemistry , Gene Ontology , Genes, Plant , Hordeum/genetics , Intrinsically Disordered Proteins/genetics , Plant Proteins/genetics , Proteome/genetics , Proteomics/methods , Triticum/genetics
11.
Gene ; 714: 143984, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31330237

ABSTRACT

Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes and involved in key biological and cellular processes. Although some resources of disordered protein predictions are available from animal and plant proteomes, those related to cereals are largely unknown. Here, we present an overview of IDPomes from Oryza sativa, Zea mays, Sorghum bicolor and Brachypodium distachyon. The work includes a comparative analysis with the model plant Arabidopsis thaliana. The data show that the intrinsic disorder content increases with the proteome size. Gene Ontology analysis reveals that IDPs in the studied species are involved mainly in regulation of cellular and metabolic processes and responses to stimulus. Our findings strongly suggest that higher plants may use common cellular and regulatory mechanisms for adaptation to various environmental constraints.


Subject(s)
Edible Grain/genetics , Intrinsically Disordered Proteins/genetics , Adaptation, Biological/genetics , Arabidopsis/genetics , Brachypodium/genetics , Gene Ontology , Genomics/methods , Oryza/genetics , Plant Proteins/genetics , Proteome/genetics , Sorghum/genetics , Zea mays/genetics
12.
Plant Physiol Biochem ; 135: 242-252, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30584966

ABSTRACT

MAPK phosphatases (MKPs) are relevant negative regulators of MAPKs in eukaryotes as they mediate the feedback control of MAPK cascades in multiple cellular processes. Despite their relevance, our knowledge on the role of cereal MKPs in stress tolerance is scarce and TMKP1 remains today the only studied MKP in wheat. TMKP1 was previously reported to be involved in plant salt stress tolerance. Moreover, TMKP1 was shown to interact with calmodulin (CaM), 14-3-3 and TMPK3/TMPK6 proteins, which regulate its catalytic activity. To further understand the functional properties of TMKP1, we investigate here the contribution of its phosphorylation status, and of TMPK3 together with CaM and bivalent cations on the catalytic activity. In-gel kinase assays revealed that TMKP1 can be phosphorylated by similar wheat and Arabidopsis MAPKs, including most likely MPK3 and MPK6. In addition, we provide evidence for the capacity of wheat TMPK3 to bind to TMKP1 via a conserved Kinase Interacting Domain (KID) located on its C-terminal part. This interaction leads to a stimulation of TMKP1 activity in the presence of Mn2+ or Mg2+ ions, but to its inhibition in the presence of Ca2+ ions. However, the phosphorylation status of TMKP1 seems to be dispensable for TMKP1 activation by TMPK3. Remarkably, in assays combining TMPK3 with CaM/Ca2+ complex, we registered rather an inhibition of TMKP1 activity which however can be suppressed by Mn2+ cations. Our data are in favor of complex differential regulation of TMKP1 by its MPK substrates, metallic cations that might help in fine-tuning the plant cellular responses to various stresses.


Subject(s)
Calmodulin/metabolism , Dual Specificity Phosphatase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Plant Proteins/metabolism , Triticum/metabolism , Calcium/metabolism , Magnesium/metabolism , Manganese/metabolism , Phosphorylation , Triticum/enzymology
13.
Plant Cell Rep ; 37(12): 1625-1637, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30099611

ABSTRACT

KEY MESSAGE: Rice rss1 complementation assays show that wheat TdRL1 and RSS1 are true functional homologs. TdRL1 over-expression in Arabidopsis conferred salt stress tolerance and alleviated ROS accumulation. Plants have developed highly flexible adaptive responses to their ever-changing environment, which are often mediated by intrinsically disordered proteins (IDP). RICE SALT SENSITIVE 1 and Triticum durum RSS1-Like 1 protein (TdRL1) are both IDPs involved in abiotic stress responses, and possess conserved D and DEN-Boxes known to be required for post-translational degradation by the APC/Ccdc20 cyclosome. To further understand their function, we performed a computational analysis to compare RSS1 and TdRL1 co-expression networks revealing common gene ontologies, among which those related to cell cycle progression and regulation of microtubule (MT) networks were over-represented. When over-expressed in Arabidopsis, TdRL1::GFP was present in dividing cells and more visible in cortical and endodermal cells of the Root Apical Meristem (RAM). Incubation with the proteasome inhibitor MG132 stabilized TdRL1::GFP expression in RAM cells showing a post-translational regulation. Moreover, immuno-cytochemical analyses of transgenic roots showed that TdRL1 was present in the cytoplasm and within the microtubular spindle of mitotic cells, while, in interphasic cells, it was rather restricted to the cytoplasm with a spotty pattern at the nuclear periphery. Interestingly in cells subjected to stress, TdRL1 was partly relocated into the nucleus. Moreover, TdRL1 transgenic lines showed increased germination rates under salt stress conditions as compared to wild type. This enhanced salt stress tolerance was associated to an alleviation of oxidative damage. Finally, when expressed in the rice rss1 mutant, TdRL1 suppressed its dwarf phenotype upon salt stress, confirming that both proteins are true functional homologs required for salt stress tolerance in cereals.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Salt Tolerance , Sequence Homology, Amino Acid , Stress, Physiological , Triticum/metabolism , Arabidopsis/genetics , Cell Cycle/genetics , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Genetic Complementation Test , Germination/drug effects , Green Fluorescent Proteins/metabolism , Leupeptins/pharmacology , Mutation/genetics , Oryza/genetics , Oxidative Stress/drug effects , Phenotype , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Protein Stability/drug effects , Salt Tolerance/drug effects , Seeds/drug effects , Seeds/growth & development , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Triticum/genetics
14.
PLoS One ; 13(7): e0200566, 2018.
Article in English | MEDLINE | ID: mdl-30021005

ABSTRACT

The TIFY proteins constitute a plant-specific super-family and they are involved in regulating many plant processes, such as development, defences and stress responses. The Jasmonate-ZIM-Domain (JAZ) proteins, the best-characterized sub-group of the TIFY family are key regulator of the jasmonic acid (JA) signalling pathway. Jasmonates regulate several aspects of plant development, and play a primary role in defence mechanisms as well as in plant responses to abiotic stresses. The TIFY family is well studied in dicots but poorly investigated in monocots. The present study reports an extensive genomic identification of TIFY proteins from Triticum aestivum. We identified 49 TIFY genes, which were annotated according to three sub-genomes (AABBDD) of T. aestivum. Following their clustering with Oryza sativa and Brachypodium distachyon, the 49 genes were grouped in 18 different TIFY homeologous subsets. Expression analyses of 6 representative TIFY genes on Tunisian durum wheat seedlings revealed their differential regulation by various stress treatment, including JA, ABA and salt stress. TIFY11a was specifically induced after salt treatment. Transgenic lines over-expressing TdTIFY11a showed higher germination and growth rates under high salinity conditions, compared to wild type plants. In summary, our results outline a relevant role of wheat TIFY proteins in promoting germination under salt stress.


Subject(s)
Cyclopentanes/metabolism , Gene Expression Regulation, Plant/physiology , Oxylipins/metabolism , Plant Proteins , Signal Transduction/physiology , Transcription Factors , Triticum , Plant Proteins/biosynthesis , Plant Proteins/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics , Triticum/genetics , Triticum/metabolism
15.
PLoS One ; 13(1): e0191272, 2018.
Article in English | MEDLINE | ID: mdl-29338035

ABSTRACT

Reversible phosphorylation is an essential mechanism regulating signal transduction during development and environmental stress responses. An important number of dephosphorylation events in the cell are catalyzed by type one protein phosphatases (PP1), which catalytic activity is driven by the binding of regulatory proteins that control their substrate specificity or subcellular localization. Plants harbor several PP1 isoforms accounting for large functional redundancies. While animal PP1s were reported to play relevant roles in controlling multiple cellular processes, plant orthologs remain poorly studied. To decipher the role of plant PP1s, we compared PP1 genes from three monocot species, Brachypodium, common wheat and rice at the genomic and transcriptomic levels. To gain more insight into the wheat PP1 proteins, we identified and characterized TdPP1a, the first wheat type one protein phosphatase from a Tunisian durum wheat variety Oum Rabiaa3. TdPP1a is highly conserved in sequence and structure when compared to mammalian, yeast and other plant PP1s. We demonstrate that TdPP1a is an active, metallo-dependent phosphatase in vitro and is able to interact with AtI2, a typical regulator of PP1 functions. Also, TdPP1a is capable to complement the heat stress sensitivity of the yeast mutant indicating that TdPP1a is functional also in vivo. Moreover, transient expression of TdPP1a::GFP in tobacco leaves revealed that it is ubiquitously distributed within the cell, with a strong accumulation in the nucleus. Finally, transcriptional analyses showed similar expression levels in roots and leaves of durum wheat seedlings. Interestingly, the expression in leaves is significantly induced following salinity stress, suggesting a potential role of TdPP1a in wheat salt stress response.


Subject(s)
Brachypodium/enzymology , Brachypodium/genetics , Phosphoprotein Phosphatases/genetics , Plant Proteins/genetics , Triticum/enzymology , Triticum/genetics , Amino Acid Sequence , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Isoenzymes/genetics , Isoenzymes/metabolism , Oryza/enzymology , Oryza/genetics , Phosphoprotein Phosphatases/metabolism , Phylogeny , Plant Proteins/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Sequence Homology, Amino Acid , Species Specificity , Stress, Physiological
16.
Sci Rep ; 8(1): 1137, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348608

ABSTRACT

Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.


Subject(s)
6-Phytase/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Osmotic Pressure , Phosphates/deficiency , Plant Development , Abscisic Acid/metabolism , Adaptation, Biological , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified , Reactive Oxygen Species/metabolism
17.
Plant Sci ; 257: 37-47, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28224917

ABSTRACT

Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn2+, whereas in the presence of Ca2+ ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.


Subject(s)
14-3-3 Proteins/metabolism , Dual Specificity Phosphatase 1/metabolism , Plant Proteins/metabolism , Triticum/enzymology , Amino Acid Motifs , Amino Acid Sequence , Antibody Specificity/immunology , Arabidopsis/metabolism , Calcium/pharmacology , Cations, Divalent/pharmacology , Conserved Sequence , Dual Specificity Phosphatase 1/chemistry , Mutation/genetics , Phosphorylation/drug effects , Protein Binding/drug effects , Saccharomyces cerevisiae/metabolism , Serine/genetics , Triticum/drug effects
18.
Crit Rev Biotechnol ; 37(7): 898-910, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28076998

ABSTRACT

Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today's agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial.


Subject(s)
Arabidopsis/metabolism , 6-Phytase , Phosphates , Phytic Acid , Triticum
19.
Front Plant Sci ; 7: 1787, 2016.
Article in English | MEDLINE | ID: mdl-27965692

ABSTRACT

Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields.

20.
J Plant Physiol ; 193: 12-21, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26927025

ABSTRACT

Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant.


Subject(s)
Arabidopsis/physiology , Dual Specificity Phosphatase 1/metabolism , Gene Expression Regulation, Plant , Signal Transduction , Sodium Chloride/pharmacology , Triticum/enzymology , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis/genetics , Dual Specificity Phosphatase 1/genetics , Germination/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Salt Tolerance , Seedlings/drug effects , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Stress, Physiological , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL