Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Int J Parasitol Parasites Wildl ; 24: 100944, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38973940

ABSTRACT

Morphological, gene sequence, host tissue tropism, and life cycle characteristics were utilized to describe the myxozoan, Myxobolus rasmusseni n. sp. from fathead minnow, Pimephales promelas, collected from reservoirs in southern Alberta. Results from serial histological sections of whole heads showed that myxospores were contained within irregular-shaped and sized coelozoic capsules (=plasmodia). Clusters of membrane-bound, myxospore-filled plasmodia filled the head cavities of juvenile fathead minnows, leading to the development of large, white, disfiguring lesions in mid to late summer. Bilateral exopthalmia (pop-eye disease) was a common outcome of M. rasmusseni n. sp. development. BLASTn search of a 1974 bp sequence of the 18S rDNA gene isolated from myxospores indicated that M. rasmusseni n. sp. was distinct from other coelozoic and histozoic Myxobolus spp. cataloged in GenBank. 18S rDNA gene sequences from triactinomyxon spores released from the oligochaete Tubifex were 100% identical to sequences from myxospores collected from syntopic fathead minnows. Results from a longitudinal survey of the 2020 cohort of fathead minnows showed that young-of-the-year are exposed at 1-5 mo and that 60-90% of these had developed myxospore-filled lesions approximately one year later. Data regarding potential sources and timing of M. rasmusseni n. sp. emergence in fathead minnow populations are needed.

2.
J Vet Diagn Invest ; 36(3): 400-417, 2024 May.
Article in English | MEDLINE | ID: mdl-38456288

ABSTRACT

Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.


Subject(s)
Drug Resistance, Bacterial , Respiratory Tract Infections , Animals , Respiratory Tract Infections/veterinary , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/diagnosis , Drug Resistance, Bacterial/genetics , Bacterial Infections/veterinary , Bacterial Infections/microbiology , Bacterial Infections/diagnosis , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Metagenomics , Humans , Anti-Bacterial Agents/pharmacology
3.
Dev Comp Immunol ; 152: 105115, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101714

ABSTRACT

Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.


Subject(s)
Caenorhabditis elegans , Mammals , Animals , Progranulins , Granulins , Protein Isoforms/genetics
4.
Mol Phylogenet Evol ; 182: 107748, 2023 05.
Article in English | MEDLINE | ID: mdl-36858082

ABSTRACT

Freshwater annelids are globally widespread in aquatic ecosystems, but their diversity is severely underestimated. Obvious morphological features to define taxa are sparse, and molecular phylogenetic analyses regularly discover cryptic diversity within taxa. Despite considerable phylogenetic work on certain clades, many groups of freshwater annelids remain poorly understood. Included among these are water nymph worms of the genus Chaetogaster (Clitellata: Tubificida: Naididae: Naidinae). These worms have diverged from the detritivorous diet of most oligochaetes to become more predatory and exist as omnivores, generalist predators, parasites, or symbionts on other invertebrates. Despite their unusual trophic ecology, the true diversity of Chaetogaster and the phylogenetic relationships within the genus are uncertain. Only three species are commonly referenced in the literature (Chaetogaster diaphanus, Chaetogaster limnaei, and Chaetogaster diastrophus), but additional species have been described and prior molecular data suggests that there is cryptic diversity within named species. To clarify the phylogenetic diversity of Chaetogaster, we generated the first molecular phylogeny of the genus using mitochondrial and nuclear sequence data from 128 worms collected primarily across North America and Europe. Our phylogenetic analyses suggest that the three commonly referenced species are a complex of 24 mostly cryptic species. In our dataset, Chaetogaster "diaphanus" is represented by two species, C. "limnaei" is represented by three species, and C. "diastrophus" is represented by 19 species. North American and European sequences are largely interspersed across the phylogeny, with four pairs of clades involving distinct North American and European sister groupings. Overall, our study demonstrates that the species diversity of Chaetogaster has been underestimated and that carnivory has evolved at least twice in the genus. Chaetogaster is being used as a model for symbiotic evolution and the loss of regenerative ability, and our study indicates that researchers must be careful to identify which species of Chaetogaster they are working with in future studies.


Subject(s)
Ecosystem , Oligochaeta , Animals , Phylogeny , Oligochaeta/genetics , Fresh Water , Ecology
5.
PLoS Pathog ; 19(2): e1010884, 2023 02.
Article in English | MEDLINE | ID: mdl-36730464

ABSTRACT

Schistosoma mansoni employs immune evasion and immunosuppression to overcome immune responses mounted by its snail and human hosts. Myriad immunomodulating factors underlie this process, some of which are proteases. Here, we demonstrate that one protease, an invadolysin we have termed SmCI-1, is released from the acetabular glands of S. mansoni cercaria and is involved in creating an immunological milieu favorable for survival of the parasite. The presence of SmCI-1 in the cercarial stage of S. mansoni is released during transformation into the schistosomula. SmCI-1 functions as a metalloprotease with the capacity to cleave collagen type IV, gelatin and fibrinogen. Additionally, complement component C3b is cleaved by this protease, resulting in inhibition of the classical and alternative complement pathways. Using SmCI-1 knockdown cercariae, we demonstrate that SmCI-1 protects schistosomula from complement-mediated lysis in human plasma. We also assess the effect of SmCI-1 on cytokine release from human peripheral blood mononuclear cells, providing compelling evidence that SmCI-1 promotes an anti-inflammatory microenvironment by enhancing production of IL-10 and suppressing the production of inflammatory cytokines like IL-1B and IL-12p70 and those involved in eosinophil recruitment and activation, like Eotaxin-1 and IL-5. Finally, we utilize the SmCI-1 knockdown cercaria in a mouse model of infection, revealing a role for SmCI-1 in S. mansoni survival.


Subject(s)
Schistosoma mansoni , Schistosomiasis mansoni , Animals , Mice , Humans , Leukocytes, Mononuclear , Cercaria , Complement System Proteins , Metalloproteases , Immunity
6.
Pathogens ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35631086

ABSTRACT

Avian schistosomes are considered a public health nuisance due to their ability to cause swimmer's itch when accidentally encountering humans rather than their intended avian hosts. Researchers have been monitoring their presence and abundance through snail collections and cercariometry. Cercariometry methods have evolved over the last several decades to detect individual schistosome species from a single water sample, simplifying the monitoring of these parasites. This methodological evolution coincides with the development of the field of environmental DNA (eDNA) where genetic material is extracted from environmental samples, rather than individual organisms. While there are some limitations with using molecular cercariometry, notably the cost and its inability to differentiate between life cycle stages, it substantially reduces the labor required to study trematode populations. It also can be used in complement with snail collections to understand the composition of avian schistosomes in an environment.

7.
Int J Parasitol ; 52(5): 305-315, 2022 04.
Article in English | MEDLINE | ID: mdl-35007566

ABSTRACT

To control swimmer's itch in northern Michigan inland lakes, USA, one species of bird, the common merganser (Mergus merganser), has been relocated from several lakes since 2015. Relocation efforts are driven by a desire to reduce the prevalence of the swimmer's itch-causing parasite Trichobilharzia stagnicolae. The intention of this state-sponsored control effort was to interrupt the life cycle of T. stagnicolae and reduce parasite egg contribution into the environment from summer resident mergansers such that infections of the intermediate snail host Stagnicola emarginata declined. Reduced snail infection prevalence was expected to substantially reduce the abundance of the swimmer's itch-causing cercarial stage of the parasite in water. With no official programme in place to assess the success of this relocation effort, we sought to study the effectiveness and impact of the removal of a single definitive host from a location with high definitive host and parasite diversity. This was assessed through a comprehensive, lake-wide monitoring study measuring longitudinal changes in the abundance of three species of avian schistosome cercariae in four inland Michigan lakes. Environmental measurements were also taken at these lakes to understand how they can affect swimmer's itch incidence. This study demonstrates that the diversity of avian schistosomes at the study lakes would likely make targeting a single species of swimmer's itch-causing parasite meaningless from a swimmer's itch control perspective. Our data also suggest that removing the common merganser is not an effective control strategy for the T. stagnicolae parasite, likely due to contributions of the parasite made by non-resident birds, possibly migrants, in the autumn and spring. It appears likely that only minimal contact time between the definitive host and the lake ecosystem is required to contribute sufficient parasite numbers to maintain a thriving population of parasite species with high host specificity.


Subject(s)
Schistosomatidae , Trematode Infections , Animals , Cercaria , Ecosystem , Lakes/parasitology , Snails/parasitology , Trematode Infections/epidemiology , Trematode Infections/parasitology , Trematode Infections/veterinary
8.
Immunogenetics ; 74(1): 77-98, 2022 02.
Article in English | MEDLINE | ID: mdl-34854945

ABSTRACT

The immune cells of the snail Biomphalaria glabrata are classified into hyalinocyte and granulocyte subtypes. Both subtypes are essential for the proper functioning of the snail immune response, which we understand best within the context of how it responds to challenge with the human parasite Schistosoma mansoni. Granulocytes are adherent phagocytic cells that possess conspicuous granules within the cell cytoplasm. Hyalinocytes, on the other hand, are predominantly non-adherent and are known to produce a handful of anti-S. mansoni immune effectors. While our understanding of these cells has progressed, an in-depth comparison of the functional capabilities of each type of immune cell has yet to be undertaken. Here, we present the results of a single-cell RNA-seq study in which single granulocytes and hyalinocytes from S. mansoni-susceptible M-line B. glabrata and S. mansoni-resistant BS-90 B. glabrata are compared without immune stimulation. This transcriptomic analysis supports a role for the hyalinocytes as producers of immune effectors such as biomphalysin and thioester-containing proteins. It suggests that granulocytes are primarily responsible for producing fibrinogen-related proteins and are armed with various pattern-recognition receptors such as toll-like receptors with a confirmed role in the anti-S. mansoni immune response. This analysis also confirms that the granulocytes and hyalinocytes of BS-90 snails are generally more immunologically prepared than their M-line counterparts. As the first single-cell analysis of the transcriptional profiles of B. glabrata immune cells, this study provides crucial context for understanding the B. glabrata immune response. It sets the stage for future investigations into how each immune cell subtype differs in its response to various immunological threats.


Subject(s)
Biomphalaria , Animals , Biomphalaria/genetics , Biomphalaria/parasitology , Gene Expression Profiling , Humans , Proteins , RNA-Seq , Schistosoma mansoni/genetics
9.
Dis Aquat Organ ; 145: 119-137, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34196282

ABSTRACT

Myxobolus cerebralis is the causative agent of whirling disease in salmonid fishes. In 2016, this invasive parasite was detected in Alberta, Canada, for the first time, initiating a comprehensive 3 yr monitoring program to assess where the parasite had spread within the province. As part of this program, a qPCR-based test was developed to facilitate detection of the environmental stages of M. cerebralis and from the oligochaete host, Tubifex tubifex. During this program, ~1500 environmental samples were collected and tested over 3 yr. Fish were collected from the same watersheds over 2 yr and tested as part of the official provincial monitoring effort. Substrate testing identified sites positive for M. cerebralis in 3 of 6 watersheds that had been confirmed positive by fish-based testing and 3 novel detections where the parasite had not been detected previously. Testing of individually isolated Tubifex from each sample site was used to further confirm the presence of M. cerebralis. DNA barcoding of the cytochrome oxidase I (cox1) gene of 567 oligochaete specimens collected from 6 different watersheds yielded 158 unique sequences belonging to 21 genera and 37 putative species. Phylogenetic analyses of sequences assigned to the genus Tubifex predicted 5 species of Tubifex arising from this assessment. Based on our results, we propose that environmental and worm samples can be a valuable complement to the gold-standard fish testing and will be especially useful for monitoring in areas where fish collection is challenging or prohibitive because of site accessibility or vulnerability of the fish populations.


Subject(s)
Fish Diseases , Myxobolus , Oligochaeta , Alberta , Animals , Environmental Monitoring , Fish Diseases/epidemiology , Myxobolus/genetics , Phylogeny
10.
Front Vet Sci ; 8: 595152, 2021.
Article in English | MEDLINE | ID: mdl-33778031

ABSTRACT

Quantification and tracking of antimicrobial use (AMU) are key factors for the development of responsible antimicrobial stewardship programs and comparison between countries. Global finfish aquaculture growth and increased AMU creates the potential for exchange of antimicrobial resistance between aquatic and terrestrial environments, making AMU surveillance imperative for this industry. The objective of this review is to collate current literature on AMU surveillance indicators and their application to commercial finfish aquaculture production. A systematic search strategy was applied to five databases: Medline, Embase, Agricola, CAB abstracts, and Biosis. To be included, studies must report on at least one AMU surveillance indicator for use in animals. There is no single, standardized indicator suitable to report finfish aquaculture AMU. The type and availability of finfish aquaculture data presents unique considerations for AMU reporting. Ultimately, the indicator used should be fit-for-purpose to satisfy the objective of the surveillance program, motivation for comparison and provide useful information to the industry stakeholders. Finfish aquaculture total annual slaughter weight allows estimation of biomass for the population correction unit (PCU) to report annual total mg of active antimicrobial ingredient per PCU. These data are commonly reported by finfish aquaculture-producing countries, allowing for international comparisons. However, this precludes the ability to compare to terrestrial livestock where the PCU is based on animal numbers and an average treatment weight, which are not available for finfish aquaculture. The mg per adjusted PCU indicator provides an interesting alternative that incorporates the length of the marine grow-out phase for finfish, but is subject to the same limitations. The number of defined daily doses animal per animal-days-at-risk is useful but also limited by a lack of a defined average treatment weight. The concept of average treatment weight remains challenging for the industry as it does not accurately reflect the timing of actual AMU to fish in the system. The term "average biomass" is more reflective of the intent of AMU surveillance indicators. Defining an average treatment weight, or average biomass, will require industry engagement, which is crucial if AMU reporting is to be deemed credible and provide value back to the finfish aquaculture industry.

11.
J Parasitol ; 107(1): 89-97, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33556182

ABSTRACT

Freshwater gastropods of the genera Lymnaea Lamarck, 1799, Physa Draparnaud, 1801, Gyraulus Charpentier, 1837, Radix Montfort, 1810, and Stagnicola Jeffreys, 1830 are considered suitable intermediate hosts for avian schistosomes. A large trematode biodiversity survey performed across 3 yr on 6 lakes in Alberta confirmed 3 already-reported snail hosts for 7 North American avian schistosomes; however, the cytochrome c oxidase subunit 1 (COI) nucleotide sequence from 1 cercarial sample (from a single specimen of Planorbella trivolvis) was distinct from all other COI schistosome sequences. As part of a simultaneous, comparable study of P. trivolvis by us in Michigan, we collected another cercarial type from 6 lakes that was 99% similar (COI) to the aforementioned cercarial type. Phylogenetic analyses of the COI and 28S rDNA genes recovered the former cercaria in a clade of avian schistosomes. In Michigan, the feces of a Canada goose (Branta canadensis Linnaeus, 1758) had a miracidium with an identical COI nucleotide sequence. Preliminary swimmer's itch and cercarial emergence studies were performed to determine if the cercariae could cause swimmer's itch and to study the emergence pattern as compared with species of Trichobilharzia Skrjabin and Zakharow, 1920.


Subject(s)
Gastropoda/parasitology , Schistosoma/isolation & purification , Alberta , Animals , Base Sequence , Bayes Theorem , Birds , Cercaria/anatomy & histology , Cercaria/classification , Cercaria/isolation & purification , Dermatitis/parasitology , Electron Transport Complex IV/genetics , Feces/parasitology , Humans , Lakes , Michigan , Phylogeny , RNA, Ribosomal, 28S/genetics , Schistosoma/anatomy & histology , Schistosoma/classification , Schistosoma/physiology , Sequence Alignment
12.
Int J Parasitol Parasites Wildl ; 13: 283-291, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33318927

ABSTRACT

Parasites have been neglected from most biodiversity surveys even though they are an essential component of ecosystems and intimately associated with the free-living communities within them. Parasites with complex life cycles, such as digenean trematode flatworms, utilize at least two host species within an ecosystem for their development and transmission, taking advantage of species networks to complete their life cycles. Despite this knowledge, our understanding of the processes that contribute to parasite community assembly, and which limit their geographic distributions, are rudimentary, including the importance of host diversity. Utilizing recent advancements in the identification of cryptic trematode species through molecular barcoding, we examined patterns of community assembly involving 79 species in six Alberta lakes over three years. Specifically, we focused on spatiotemporal variation in trematode diversity within their snail first intermediate hosts (component communities), how this might relate to host diversity through the specificity of host-parasite relationships, and the role of certain environmental factors in structuring these communities. We found substantial natural fluctuations of trematode communities through space and time within these lakes. Trematode communities were diverse, showing an overall positive relationship with snail diversity, but were often dominated by a few common species. We found that ecoregion and lake trophic status were key predictors for the presence of these trematode species. Such information is key for understanding how biodiversity alterations may affect parasite community composition, as well as our ability to formulate predictive models, by considering how this could influence both species richness and evenness.

13.
PLoS One ; 15(5): e0229701, 2020.
Article in English | MEDLINE | ID: mdl-32401786

ABSTRACT

Recreational water monitoring can be challenging due to the highly variable nature of pathogens and indicator concentrations, the myriad of potential biological hazards to measure for, and numerous access points, both official and unofficial, that are used for recreation. The aim of this study was to develop, deploy, and assess the effectiveness of a quantitative polymerase chain reaction (qPCR) community-based monitoring (CBM) program for the assessment of bacterial and parasitic hazards in recreational water. This study developed methodologies for performing qPCR 'in the field,' then engaged with water management and monitoring groups and tested the method in a real-world implementation study to evaluate the accuracy of CBM using qPCR both quantitatively and qualitatively. This study found high reproducibility between qPCR results performed by non-expert field users and expert laboratory results, suggesting that qPCR as a methodology could be amenable to a CBM program.


Subject(s)
Bacteria/isolation & purification , Environmental Monitoring , Water Microbiology , Water/parasitology , Bacteria/genetics , Bacteria/pathogenicity , Humans , Recreation , Water Quality/standards
14.
Elife ; 92020 01 09.
Article in English | MEDLINE | ID: mdl-31916937

ABSTRACT

Immune factors in snails of the genus Biomphalaria are critical for combating Schistosoma mansoni, the predominant cause of human intestinal schistosomiasis. Independently, many of these factors play an important role in, but do not fully define, the compatibility between the model snail B. glabrata, and S. mansoni. Here, we demonstrate association between four previously characterized humoral immune molecules; BgFREP3, BgTEP1, BgFREP2 and Biomphalysin. We also identify unique immune determinants in the plasma of S. mansoni-resistant B. glabrata that associate with the incompatible phenotype. These factors coordinate to initiate haemocyte-mediated destruction of S. mansoni sporocysts via production of reactive oxygen species. The inclusion of BgFREP2 in a BgFREP3-initiated complex that also includes BgTEP1 almost completely explains resistance to S. mansoni in this model. Our study unifies many independent lines of investigation to provide a more comprehensive understanding of the snail immune system in the context of infection by this important human parasite.


Subject(s)
Biomphalaria/parasitology , Host-Parasite Interactions/immunology , Immunologic Factors/immunology , Reactive Oxygen Species/metabolism , Schistosoma mansoni/physiology , Animals , Biomphalaria/immunology , Hemocytes/immunology , Humans , Immunity, Humoral , Oocysts/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/prevention & control
15.
Front Immunol ; 11: 624178, 2020.
Article in English | MEDLINE | ID: mdl-33613562

ABSTRACT

Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.


Subject(s)
Adaptive Immunity , Gastropoda/parasitology , Host-Parasite Interactions/immunology , Immunity, Innate , Schistosoma/immunology , Schistosomiasis mansoni/immunology , Animals , Gastropoda/immunology , Humans , Immunomodulation , Life Cycle Stages , Lung/immunology , Lung/parasitology , Molecular Mimicry , Mucins/metabolism , Oocysts/metabolism , Proteome , Schistosoma/growth & development , Schistosoma/metabolism , Schistosoma/pathogenicity , Transcriptome
16.
Acta Trop ; 199: 105116, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31356786

ABSTRACT

Globally over 200 million people are infected with schistosomiasis, and approximately 80% are caused by just two of five species, Schistosoma haematobium and Schitosoma mansoni that are broadly distributed, and often overlap across sub-Saharan Africa. Like most neglected tropical diseases, mortality is low (an estimated 200,000 deaths annually) and morbidity is considerably high and probably underestimated. Surprisingly, little attention has been given to co-infection with these two species. We have studied co-infection with S. mansoni and S. haematobium in a peri-urban community in Ghana, one of the most highly endemic countries for schistosomiasis. We collected and examined snails of the two intermediate host species from the reservoir adjacent to the community. We also used microscopical examination of stool and urine samples to determine the level of concurrent S. mansoni and S. haematobium infections in school and administered questionnaires to assess water contact activities that predispose pupils to infections Examination of the snail hosts revealed that 0.7% (7/896) of Bulinus truncatus and 1.7% (14/780) of Biomphalaria pfeifferi snails were found to be hosting cercariae morphologically consistent with that of S. haematobium and S. mansoni respectively. The overall prevalence values for urogenital and intestinal schistosomiasis were 66.8% (135/202) and 90.1% (163/181) respectively. Only 50 of 181 schistosome-infected pupils had single-species infections and the remaining 131 pupils presented concurrent infections. Among the 131 infected with both species were 50 individuals having only S. mansoni eggs in stool and S. haematobium eggs in urine (conventional presentation). Eighty-one children (81) had eggs of both species in either urine and/or stool (ectopic presentation). From these 81, 63 had eggs of both species in urine, 6 had both species in stool, and 12 had eggs of both species present in both urine and stool. A comparatively large number of individuals from the concurrent infected group presented high and moderate infection intensities than the single infected groups. The overwhelmingly high prevalence of concurrent infections indicates further study of co-infection is needed, and points to a need call for a holistic disease control plan so Ghana can be part of nations to achieve the WHO roadmap target for schistosomiasis control by 2020.


Subject(s)
Coinfection/epidemiology , Schistosomiasis haematobia/epidemiology , Schistosomiasis mansoni/epidemiology , Adolescent , Adult , Animals , Child , Child, Preschool , Feces/parasitology , Female , Ghana/epidemiology , Humans , Male , Prevalence , Schistosomiasis haematobia/prevention & control , Schistosomiasis mansoni/prevention & control , Snails , Urine/parasitology , Young Adult
17.
Int J Parasitol Parasites Wildl ; 9: 122-129, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31061794

ABSTRACT

Swimmer's itch is an allergic condition that occurs when the motile and infectious stage of avian schistosomes penetrate the skin of an individual. Flatworm parasites that cause swimmer's itch belong to the family Schistosomatidae. They utilize a variety of different species of bird and mammal as definitive hosts, and rely on different species of snail, in which they complete their larval development to culminate in a motile, aquatic, infectious stage called a cercaria. Recently, qPCR-based assays have been developed to monitor for swimmer's itch-causing trematodes in recreational water. This environmental DNA approach has been useful for quantifying the abundance of the free-living cercaria, the causative agent of swimmer's itch. However, the existing qPCR test amplifies from all known schistosome species, making it excellent for assessing a site for swimmer's itch potential, but not useful in determining the specific species contributing to swimmer's itch or the likely hosts (snail and bird) of the swimmer's itch-causing parasites. Thus, species-specific resolution built into a qPCR test would be useful in answering ecological questions about swimmer's itch cause, and efficacy of control efforts. This paper details bird, snail, and cercaria surveys conducted in the summer of 2018, that culminated in the development and deployment of four species-specific qPCR assays, capable of detecting Trichobilharzia stagnicolae, Trichobilharzia szidati, Trichobilharzia physellae, and Anserobilharzia brantae in recreational water. These assays were used to assess the relative abundance of each parasite in water samples collected from lakes in Northern Michigan.

18.
Ecol Evol ; 9(6): 3153-3238, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30962888

ABSTRACT

Despite over 100 years of digenean trematode parasite species descriptions, from a wide diversity of vertebrate and invertebrate host species, our ability to recognize the diversity of trematode species within a single lake remains an incredible challenge. The most challenging aspect is the identification of species from larval stages derived from intermediate hosts, due to the disjointed data of adult worm morphological descriptions, from which species are named, and links to corresponding molecular identifiers in depauperate databases. Cryptic species also play a significant role in the challenge of linking trematode larvae to adults, species identifications, and estimating diversity. Herein, we utilize a large, longitudinal dataset of snail first-intermediate host infection data from lakes in Alberta, Canada, to infer trematode larval diversity using molecular phylogenetics and snail host associations. From our assessments, we uncover a diversity of 79 larval trematode species among just five snail host species. Only 14 species were identified to a previously described species, while the other 65 species are either cryptic or otherwise unrepresented by mitochondrial genes in GenBank. This study currently represents the largest and most diverse singular molecular survey of trematode larval fauna composed of over one thousand mitochondrial sequences. Surprisingly, rarefaction analyses indicate we have yet to capture the complete diversity of trematodes from our sampling area.

19.
Parasitol Res ; 118(5): 1673-1677, 2019 May.
Article in English | MEDLINE | ID: mdl-30850865

ABSTRACT

Swimmer's itch has historically been controlled by applying copper sulfate (CuSO4) to lakes as a way to eliminate snails that serve as the intermediate hosts for swimmer's itch-causing parasites. CuSO4 is still sometimes applied specifically to areas of lakes where swimmer's itch severity is high. It is unclear whether targeted application of chemical molluscicides like CuSO4 is effective for controlling swimmer's itch. Previous research has found that the larval stage of the parasites responsible for swimmer's itch are released from infected snails and are concentrated by onshore and alongshore winds, and thus, may not be affected by such focused applications. In this study, we evaluated the impact of targeted CuSO4 application to a specific recreational swimming area in a lake in Michigan. We measured the effect on snail populations, as well as on the presence/abundance of swimmer's itch-causing parasites using qPCR. Ultimately, while CuSO4 was confirmed to significantly reduce populations of snails within the treatment area, it was found to have no significant impact on swimmer's itch-causing parasites in the water, likely due to the free-swimming larval stages (cercariae) moving into the treatment area from surrounding regions.


Subject(s)
Copper Sulfate/pharmacology , Dermatitis/prevention & control , Dermatitis/parasitology , Skin Diseases, Parasitic/prevention & control , Snails/drug effects , Snails/parasitology , Animals , Cercaria , Female , Humans , Lakes/parasitology , Larva/growth & development , Michigan , Real-Time Polymerase Chain Reaction , Swimming , Trematoda/isolation & purification , Trematode Infections/prevention & control
20.
Genes (Basel) ; 11(1)2019 12 28.
Article in English | MEDLINE | ID: mdl-31905675

ABSTRACT

Gastropod molluscs, which have co-evolved with parasitic digenean trematodes for millions of years, utilize circulating heamocytes as the primary method of containing and killing these invading parasites. In order to do so, they must generate suitable amounts of haemocytes that are properly armed to kill parasitic worms. One method by which they generate the haemocytes required to initiate the appropriate cell mediated immune response is via the production and post-translational processing of granulins. Granulins are an evolutionarily conserved family of growth factors present in the majority of eukaryotic life forms. In their pro-granulin form, they can elicit cellular replication and differentiation. The pro-granulins can be further processed by elastase to generate smaller granulin fragments that have been shown to functionally differ from the pro-granulin precursor. In this study, we demonstrate that in vivo addition of Biomphalaria glabrata pro-granulin (BgGRN) can reduce Schistosoma mansoni infection success in numerous Biomphalaria sp. when challenged with different S. mansoni strains. We also demonstrate that cleavage of BgGRN into individual granulin subunits by elastase results in the stimulation of haemocytes to produce reactive oxygen species.


Subject(s)
Biomphalaria/parasitology , Disease Resistance , Granulins/metabolism , Reactive Oxygen Species/metabolism , Schistosoma mansoni/metabolism , Animals , Biomphalaria/metabolism , Granulins/administration & dosage , Hemocytes , Host-Parasite Interactions , Mice , Pancreatic Elastase/metabolism , Protein Processing, Post-Translational , Schistosoma mansoni/drug effects , Schistosoma mansoni/isolation & purification , Schistosomiasis mansoni/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...