Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(1): e17188, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921120

ABSTRACT

The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.


Subject(s)
Gene Flow , Tuna , Animals , Tuna/genetics , Mediterranean Sea , Gulf of Mexico , Atlantic Ocean
2.
Mar Environ Res ; 187: 105949, 2023 May.
Article in English | MEDLINE | ID: mdl-36940558

ABSTRACT

The abundance of top predators in the southern Gulf of St. Lawrence, Canada, has fluctuated dramatically in recent decades. The associated increase in predation and its effect on the lack of recovery of many fish stocks in the system generates the need for a better understanding of predator-prey relationships and the implementation of an ecosystem approach to fisheries management. This study used stomach content analysis to further describe the diet of Atlantic bluefin tuna in the southern Gulf of St. Lawrence. Teleost fish largely dominated the stomach contents in all years. Previous studies established that Atlantic herring was the main component of the diet by weight, whereas herring was almost absent from the diet in this study. A shift in the diet of Atlantic bluefin tuna has been observed, as it now feeds almost exclusively on Atlantic mackerel. The estimated daily meal varied between years, ranging from 1026 g per day in 2019 to 2360 g per day in 2018. Daily meals and daily rations were calculated and showed substantial year-to-year variation.


Subject(s)
Ecosystem , Tuna , Animals , Canada , Diet , Fisheries , Atlantic Ocean
3.
Sci Rep ; 11(1): 20744, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671077

ABSTRACT

Atlantic bluefin tuna (Thunnus thynnus; BFT) abundance was depleted in the late 20th and early 21st century due to overfishing. Historical catch records further indicate that the abundance of BFT in the Mediterranean has been fluctuating since at least the 16th century. Here we build upon previous work on ancient DNA of BFT in the Mediterranean by comparing contemporary (2009-2012) specimens with archival (1911-1926) and archaeological (2nd century BCE-15th century CE) specimens that represent population states prior to these two major periods of exploitation, respectively. We successfully genotyped and analysed 259 contemporary and 123 historical (91 archival and 32 archaeological) specimens at 92 SNP loci that were selected for their ability to differentiate contemporary populations or their association with core biological functions. We found no evidence of genetic bottlenecks, inbreeding or population restructuring between temporal sample groups that might explain what has driven catch fluctuations since the 16th century. We also detected a putative adaptive response, involving the cytoskeletal protein synemin which may be related to muscle stress. However, these results require further investigation with more extensive genome-wide data to rule out demographic changes due to overfishing, and other natural and anthropogenic factors, in addition to elucidating the adaptive drivers related to these.


Subject(s)
DNA, Ancient/chemistry , Genetic Variation/genetics , Tuna/genetics , Animals , Anthropogenic Effects , Conservation of Natural Resources/methods , Genotype , Mediterranean Sea
4.
PeerJ ; 8: e9518, 2020.
Article in English | MEDLINE | ID: mdl-33194325

ABSTRACT

BACKGROUND: The Mediterranean swordfish stock is overfished and considered not correctly managed. Elucidating the patterns of the Mediterranean swordfish population structure constitutes an essential prerequisite for effective management of this fishery resource. To date, few studies have investigated intra-Mediterranean swordfish population structure, and their conclusions are controversial. METHODS: A panel of 20 microsatellites DNA was used to investigate fine-scale population structuring of swordfish from six main fishing areas of the Mediterranean Sea. RESULTS: This study provides evidence to reject the hypothesis of a single swordfish population within the Mediterranean Sea. DAPC analysis revealed the presence of three genetic clusters and a high level of admixture within the Mediterranean Sea. Genetic structure was supported by significant F ST values while mixing was endorsed by the heterozygosity deficit observed in sampling localities indicative of a possible Wahlund effect, by sampling admixture individuals. Overall, our tests reject the hypothesis of a single swordfish population within the Mediterranean Sea. Homing towards the Mediterranean breeding areas may have generated a weak degree of genetic differentiation between populations even at the intra-basin scale.

5.
Nature ; 572(7771): 648-650, 2019 08.
Article in English | MEDLINE | ID: mdl-31391584

ABSTRACT

More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone1. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean2, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion3. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (Gadus morhua) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (Thunnus thynnus) due to increases in seawater temperature between a low point in 1969 and recent peak levels-which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions4 suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.


Subject(s)
Aquatic Organisms/metabolism , Climate Change , Environmental Exposure/analysis , Fisheries/supply & distribution , Fishes/metabolism , Food Chain , Methylmercury Compounds/analysis , Predatory Behavior , Animals , Aquatic Organisms/chemistry , Aquatic Organisms/classification , Diet/veterinary , Dogfish/metabolism , Fishes/classification , Food Contamination/analysis , Gadus morhua/metabolism , Humans , Seafood/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis
6.
Mol Ecol Resour ; 18(3): 620-638, 2018 May.
Article in English | MEDLINE | ID: mdl-29405659

ABSTRACT

The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species' stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young-of-the-year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST  = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid-Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.


Subject(s)
Polymorphism, Single Nucleotide , Tuna/genetics , Animal Migration , Animals , Atlantic Ocean , Chromosome Mapping , Gene Frequency , Genotyping Techniques , Mediterranean Sea , Population Dynamics , Sequence Analysis, DNA , Tuna/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...