Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 10(10): 9500-9508, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27700035

ABSTRACT

The discovery of new families of exfoliatable 2D crystals that have diverse sets of electronic, optical, and spin-orbit coupling properties enables the realization of unique physical phenomena in these few-atom-thick building blocks and in proximity to other materials. Herein, using NaSn2As2 as a model system, we demonstrate that layered Zintl phases having the stoichiometry ATt2Pn2 (A = group 1 or 2 element, Tt = group 14 tetrel element, and Pn = group 15 pnictogen element) and feature networks separated by van der Waals gaps can be readily exfoliated with both mechanical and liquid-phase methods. We identified the symmetries of the Raman-active modes of the bulk crystals via polarized Raman spectroscopy. The bulk and mechanically exfoliated NaSn2As2 samples are resistant toward oxidation, with only the top surface oxidizing in ambient conditions over a couple of days, while the liquid-exfoliated samples oxidize much more quickly in ambient conditions. Employing angle-resolved photoemission spectroscopy, density functional theory, and transport on bulk and exfoliated samples, we show that NaSn2As2 is a highly conducting 2D semimetal, with resistivities on the order of 10-6 Ω·m. Due to peculiarities in the band structure, the dominating p-type carriers at low temperature are nearly compensated by the opening of n-type conduction channels as temperature increases. This work further expands the family of exfoliatable 2D materials to layered van der Waals Zintl phases, opening up opportunities in electronics and spintronics.

2.
Cell Cycle ; 13(16): 2587-99, 2014.
Article in English | MEDLINE | ID: mdl-25486199

ABSTRACT

Indole-3-carbinol (I3C) is a natural anti-carcinogenic compound found at high concentrations in Brassica vegetables. I3C was recently reported to inhibit neutrophil elastase (NE) activity, while consequently limiting the proteolytic processing of full length cyclin E into pro-tumorigenic low molecular weight cyclin E (LMW-E). In this study, we hypothesized that inhibition of NE activity and resultant LMW-E generation is critical to the anti-tumor effects of I3C. LMW-E was predominately expressed by ERα-negative breast cancer cell lines. However, ERα-positive cell lines demonstrated the greatest sensitivity to the anti-tumor effects of I3C and its more potent N-alkoxy derivatives. We found that I3C was incapable of inhibiting NE activity or the generation of LMW-E. Therefore, this pathway did not contribute to the anti-tumor activity of I3C. Gene expression analyzes identified ligand-activated aryl hydrocarbon receptor (AhR), which mediated sensitivity to the anti-tumor effects of I3C in ERα-positive MCF-7 cells. In this model system, the reactive oxygen species (ROS)-induced upregulation of ATF-3 and pro-apoptotic BH3-only proteins (e.g. NOXA) contributed to the sensitivity of ERα-positive breast cancer cells to the anti-tumor effects of I3C. Overexpression of ERα in MDA-MB-231 cells, which normally lack ERα expression, increased sensitivity to the anti-tumor effects of I3C, demonstrating a direct role for ERα in mediating the sensitivity of breast cancer cell lines to I3C. Our results suggest that ERα signaling amplified the pro-apoptotic effect of I3C-induced AhR signaling in luminal breast cancer cell lines, which was mediated in part through oxidative stress induced upregulation of ATF-3 and downstream BH3-only proteins.


Subject(s)
Alcohols/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Indoles/pharmacology , Metabolic Networks and Pathways/drug effects , Alcohols/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin E/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles/chemistry , Leukocyte Elastase/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects
3.
J Carcinog ; 10: 25, 2011.
Article in English | MEDLINE | ID: mdl-22190867

ABSTRACT

There have been numerous reviews written to date on estrogen receptor (ER), focusing on topics such as its role in the etiology of breast cancer, its mode of regulation, its role as a transcriptional activator and how to target it therapeutically, just to name a few. One reason for so much attention on this nuclear receptor is that it acts not only as a prognostic marker, but also as a target for therapy. However, a relatively undiscovered area in the literature regarding ER is how its activity in the presence and absence of ligand affects its role in proliferation and cell cycle transition. In this review, we provide a brief overview of ER signaling, ligand dependent and independent, genomic and non-genomic, and how these signaling events affect the role of ER in the mammalian cell cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...