Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Cytotherapy ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38944797

ABSTRACT

As the field of cell and gene therapy (CGT) continues to grow, so too must the infrastructure and regulatory guidance supporting the manufacture of these potentially life-saving products-especially early-phase products manufactured at an increasing number of academic or hospital-based facilities providing decentralized (or point of care) manufacturing. An important component of current good manufacturing practices, including those regulating cell and gene therapies, is the establishment of an effective environmental monitoring (EM) program. While several guidelines for establishing an EM program are available, these guidelines do not specifically address the unique aspects of manufacturing CGT products and they do not provide real-world evidence demonstrating the effectiveness of the program. Here, we describe the establishment and evolution of an EM program in a cell therapy manufacturing facility at an academic hospital. With 10 years of EM data, we analyze the effectiveness for identifying trends in environmental conditions and highlight important findings, with the aim of providing practical evidence and guidance for the development of future early-phase EM programs.

2.
PLoS Pathog ; 20(6): e1012290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861571

ABSTRACT

Taï Forest virus (TAFV) is a negative-sense RNA virus in the Filoviridae family. TAFV has caused only a single human infection, but several disease outbreaks in chimpanzees have been linked to this virus. Limited research has been done on this human-pathogenic virus. We sought to establish an animal model to assess TAFV disease progression and pathogenicity at our facility. We had access to two different viral stock preparations from different institutions, both originating from the single human case. Type I interferon receptor knockout mice were inoculated with TAFV stock 1 or stock 2 by the intraperitoneal route. Inoculation resulted in 100% survival with no disease regardless of viral stock preparation or infectious dose. Next, cynomolgus macaques were inoculated with TAFV stock 1 or stock 2. Inoculation with TAFV stock 1 resulted in 100% survival and robust TAFV glycoprotein-specific IgG responses including neutralizing antibodies. In contrast, macaques infected with TAFV stock 2 developed disease and were euthanized 8-11 days after infection exhibiting viremia, thrombocytopenia, and increased inflammatory mediators identified by transcriptional analysis. Histopathologic analysis of tissue samples collected at necropsy confirmed classic filovirus disease in numerous organs. Genomic differences in both stock preparations were mapped to several viral genes which may have contributed to disease severity. Taken together, we demonstrate that infection with the two TAFV stocks resulted in no disease in mice and opposing disease phenotypes in cynomolgus macaques, highlighting the impact of viral stock propagation on pathogenicity in animal models.


Subject(s)
Disease Models, Animal , Macaca fascicularis , Mice, Knockout , Animals , Mice , Humans , Virus Replication , Alphavirus Infections/virology , Alphavirus Infections/pathology , Receptor, Interferon alpha-beta/genetics
3.
Cytotherapy ; 26(7): 778-784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583170

ABSTRACT

BACKGROUND: Significant advancements have been made in the field of cellular therapy as anti-cancer treatments, with the approval of chimeric antigen receptor (CAR)-T cell therapies and the development of other genetically engineered cellular therapies. CAR-T cell therapies have demonstrated remarkable clinical outcomes in various hematological malignancies, establishing their potential to change the current cancer treatment paradigm. Due to the increasing importance of genetically engineered cellular therapies in the oncology treatment landscape, implementing strategies to expedite development and evidence generation for the next generation of cellular therapy products can have a positive impact on patients. METHODS: We outline a risk-based methodology and assessment aid for the data extrapolation approach across related genetically engineered cellular therapy products. This systematic data extrapolation approach has applicability beyond CAR-T cells and can influence clinical development strategies for a variety of immune therapies such as T cell receptor (TCR) or genetically engineered and other cell-based therapies (e.g., tumor infiltrating lymphocytes, natural killer cells and macrophages). RESULTS: By analyzing commonalities in manufacturing processes, clinical trial designs, and regulatory considerations, key learnings were identified. These insights support optimization of the development and regulatory approval of novel cellular therapies. CONCLUSIONS: The field of cellular therapy holds immense promise in safely and effectively treating cancer. The ability to extrapolate data across related products presents opportunities to streamline the development process and accelerate the delivery of novel therapies to patients.


Subject(s)
Genetic Engineering , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Cell- and Tissue-Based Therapy/methods , Genetic Engineering/methods , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
4.
Am J Transplant ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643944

ABSTRACT

Reactivation or primary infection with double-stranded DNA viruses is common in recipients of solid organ transplants (SOTs) and is associated with significant morbidity and mortality. Treatment with conventional antiviral medications is limited by toxicities, resistance, and a lack of effective options for adenovirus (ADV) and BK polyomavirus (BKPyV). Virus-specific T cells (VSTs) have been shown to be an effective treatment for infections with ADV, BKPyV, cytomegalovirus (CMV), and Epstein-Barr virus (EBV). Most of these studies have been conducted in stem cell recipients, and no large studies have been published in the SOT population to date. In this study, we report on the outcome of quadrivalent third-party VST infusions in 98 recipients of SOTs in the context of an open-label phase 2 trial. The 98 patients received a total of 181 infusions, with a median of 2 infusions per patient. The overall response rate was 45% for BKPyV, 65% for cytomegalovirus, 68% for ADV, and 61% for Epstein-Barr virus. Twenty percent of patients with posttransplant lymphoproliferative disorder had a complete response and 40% of patients had a partial response. All the VST infusions were well tolerated. We conclude that VSTs are safe and effective in the treatment of viral infections in SOT recipients.

5.
Nat Commun ; 15(1): 3258, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637498

ABSTRACT

Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Child , Herpesvirus 4, Human , Risk Factors , Hematopoietic Stem Cell Transplantation/adverse effects
6.
Nat Commun ; 15(1): 2749, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553461

ABSTRACT

Virus-specific T cells (VST) from partially-HLA matched donors have been effective for treatment of refractory viral infections in immunocompromised patients in prior studies with a good safety profile, but rare adverse events have been described. Here we describe a unique and severe adverse event of VST therapy in an infant with severe combined immunodeficiency, who receives, as part of a clinical trial (NCT03475212), third party VSTs for treating cytomegalovirus viremia following bone marrow transplantation. At one-month post-VST infusion, rejection of graft and reversal of chimerism is observed, as is an expansion of T cells exclusively from the VST donor. Single-cell gene expression and T cell receptor profiling demonstrate a narrow repertoire of predominantly activated CD4+ T cells in the recipient at the time of rejection, with the repertoire overlapping more with that of peripheral blood from VST donor than the infused VST product. This case thus demonstrates a rare but serious side effect of VST therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Virus Diseases , Infant , Humans , Bone Marrow Transplantation/adverse effects , Bone Marrow , Immunotherapy, Adoptive , T-Lymphocytes/transplantation , Hematopoietic Stem Cell Transplantation/adverse effects
7.
Sci Rep ; 14(1): 3381, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336916

ABSTRACT

The intestinal microbiome plays an important role in mammalian health, disease, and immune function. In light of this function, recent studies have aimed to characterize the microbiomes of various bat species, which are noteworthy for their roles as reservoir hosts for several viruses known to be highly pathogenic in other mammals. Despite ongoing bat microbiome research, its role in immune function and disease, especially the effects of changes in the microbiome on host health, remains nebulous. Here, we describe a novel methodology to investigate the intestinal microbiome of captive Jamaican fruit bats (Artibeus jamaicensis). We observed a high degree of individual variation in addition to sex- and cohort-linked differences. The intestinal microbiome was correlated with intestinal metabolite composition, possibly contributing to differences in immune status. This work provides a basis for future infection and field studies to examine in detail the role of the intestinal microbiome in antiviral immunity.


Subject(s)
Chiroptera , Gastrointestinal Microbiome , Humans , Animals , Female , Male , Jamaica , Sex Characteristics , Mammals , Metabolome
8.
J Infect Dis ; 229(3): 743-752, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38349333

ABSTRACT

BACKGROUND: The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS: Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS: VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS: These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.


Subject(s)
HIV Infections , HIV-1 , Humans , Vorinostat/therapeutic use , Vorinostat/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , CD4-Positive T-Lymphocytes , Cell- and Tissue-Based Therapy , Virus Latency
9.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38165394

ABSTRACT

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Subject(s)
COVID-19 , Pre-Exposure Prophylaxis , Animals , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Viral , Antibodies, Monoclonal , Macaca fascicularis , DNA , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
10.
Blood Adv ; 8(5): 1116-1127, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38163318

ABSTRACT

ABSTRACT: Posttransplant lymphoproliferative disease (PTLD) in pediatric solid organ transplant (SOT) recipients is characterized by uncontrolled proliferation of Epstein-Barr virus-infected (EBV+) B cells due to decreased immune function. This study evaluated the feasibility, safety, clinical and immunobiological outcomes in pediatric SOT recipients with PTLD treated with rituximab and third-party latent membrane protein-specific T cells (LMP-TCs). Newly diagnosed (ND) patients without complete response to rituximab and all patients with relapsed/refractory (R/R) disease received LMP-TCs. Suitable LMP-TC products were available for all eligible subjects. Thirteen of 15 patients who received LMP-TCs were treated within the prescribed 14-day time frame. LMP-TC therapy was generally well tolerated. Notable adverse events included 3 episodes of rejection in cardiac transplant recipients during LMP-TC therapy attributed to subtherapeutic immunosuppression and 1 episode of grade 3 cytokine release syndrome. Clinical outcomes were associated with disease severity. Overall response rate (ORR) after LMP-TC cycle 1 was 70% (7/10) for the ND cohort and 20% (1/5) for the R/R cohort. For all cohorts combined, the best ORR for LMP-TC cycles 1 and 2 was 53% and the 2-year overall survival was 70.7%. vßT-cell receptor sequencing showed persistence of adoptively transferred third-party LMP-TCs for up to 8 months in the ND cohort. This study establishes the feasibility of administering novel T-cell therapies in a cooperative group clinical trial and demonstrates the potential for positive outcomes without chemotherapy for ND patients with PTLD. This trial was registered at www.clinicaltrials.gov as #NCT02900976 and at the Children's Oncology Group as ANHL1522.


Subject(s)
Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Humans , Child , Rituximab/pharmacology , Rituximab/therapeutic use , Herpesvirus 4, Human , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , T-Lymphocytes , Lymphoproliferative Disorders/drug therapy , Lymphoproliferative Disorders/etiology , Lymphoproliferative Disorders/diagnosis
11.
Cytotherapy ; 26(2): 103-112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37943204

ABSTRACT

Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products.  Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.


Subject(s)
Antibodies , Fluorescent Dyes , Flow Cytometry , Quality Control , Genetic Therapy
12.
Sci Adv ; 9(36): eadj1428, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37672587

ABSTRACT

Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.


Subject(s)
Kyasanur Forest Disease , Vaccines , Animals , Kyasanur Forest Disease/prevention & control , Vaccination , Cross Reactions , Macaca
13.
Front Immunol ; 14: 1216225, 2023.
Article in English | MEDLINE | ID: mdl-37731485

ABSTRACT

Introduction: Immune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection. Methods: Two approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine. Results: Reduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination. Discussion and conclusion: It was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival.


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola , Henipavirus Infections , Nipah Virus , Vesicular Stomatitis , Animals , Chlorocebus aethiops , Henipavirus Infections/prevention & control , Antibodies, Neutralizing
14.
Emerg Microbes Infect ; 12(2): 2239950, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37470396

ABSTRACT

Taï Forest virus (TAFV) is a lesser-known ebolavirus that causes lethal infections in chimpanzees and is responsible for a single human case. Limited research has been done on this human pathogen; however, with the recent emergence of filoviruses in West Africa, further investigation and countermeasure development against this virus is warranted. We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the TAFV glycoprotein as the viral antigen and assessed it for protective efficacy in nonhuman primates (NHPs). Following a single high-dose vaccination, NHPs developed antigen-specific binding and neutralizing antibodies as well as modest T cell responses. Importantly, all vaccinated NHPs were uniformly protected from disease after lethal TAFV challenge while the naïve control group succumbed to the disease. Histopathologic lesions consistent with filovirus disease were present in control NHPs but were not observed in vaccinated NHPs. Transcriptional analysis of whole blood samples obtained after vaccination and challenge was performed to gain insight into molecular underpinnings conferring protection. Differentially expressed genes (DEG) detected 7 days post-vaccination were enriched to processes associated with innate immunity and antiviral responses. Only a small number of DEG was detected in vaccinated NHPs post-challenge while over 1,000 DEG were detected in control NHPs at end-stage disease which mapped to gene ontology terms indicative of defense responses and inflammation. Taken together, this data demonstrates the effective single-dose protection of the VSV-TAFV vaccine, and its potential for use in outbreaks.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Viral Vaccines , Animals , Humans , Macaca fascicularis , Antibodies, Viral , Forests
15.
J Infect Dis ; 228(Suppl 7): S617-S625, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37477943

ABSTRACT

Ebola virus (EBOV)-Makona infected more than 30 000 people from 2013 to 2016 in West Africa, among them many health care workers including foreign nationals. Most of the infected foreign nationals were evacuated and treated in their respective home countries, resulting in detailed reports of the acute disease following EBOV infection as well as descriptions of symptoms now known as post-Ebola syndrome, which occurred months after the infection. Symptoms associated with this syndrome include uveitis and neurological manifestations. In 1 of our EBOV-Makona nonhuman primate (NHP) studies, 1 NHP was euthanized on day 28 after infection having completely recovered from the acute disease. During convalescence, this NHP developed neurological signs and acute respiratory distress requiring euthanasia. The organ tropism had changed with high virus titers in lungs, brain, eye, and reproductive organs but no virus in the typical target organs for acute EBOV infection. This in part reflects sequelae described for EBOV survivors albeit developing quicker after recovery from acute disease.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Macaca mulatta , Acute Disease , Disease Progression
16.
J Infect Dis ; 228(Suppl 7): S671-S676, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37290042

ABSTRACT

Ebola virus (EBOV) and Marburg virus (MARV) made headlines in the past decade, causing outbreaks of human disease in previously nonendemic yet overlapping areas. While EBOV outbreaks can be mitigated with licensed vaccines and treatments, there is not yet a licensed countermeasure for MARV. Here, we used nonhuman primates (NHPs) previously vaccinated with vesicular stomatitis virus (VSV)-MARV and protected against lethal MARV challenge. After a resting period of 9 months, these NHPs were revaccinated with VSV-EBOV and challenged with EBOV, resulting in 75% survival. Surviving NHPs developed EBOV glycoprotein (GP)-specific antibody titers and no viremia or clinical signs of disease. The single vaccinated NHP succumbing to challenge showed the lowest EBOV GP-specific antibody response after challenge, supporting previous findings with VSV-EBOV that antigen-specific antibodies are critical in mediating protection. This study again demonstrates that VSVΔG-based filovirus vaccine can be successfully used in individuals with preexisting VSV vector immunity, highlighting the platform's applicability for consecutive outbreak response.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Marburgvirus , Vesicular Stomatitis , Animals , Humans , Hemorrhagic Fever, Ebola/prevention & control , Vesicular Stomatitis/prevention & control , Vesiculovirus , Vesicular stomatitis Indiana virus , Antibodies, Viral , Glycoproteins , Primates
17.
PLoS Pathog ; 19(4): e1011298, 2023 04.
Article in English | MEDLINE | ID: mdl-37075079

ABSTRACT

The global SARS-CoV-2 pandemic prompted rapid development of COVID-19 vaccines. Although several vaccines have received emergency approval through various public health agencies, the SARS-CoV-2 pandemic continues. Emergent variants of concern, waning immunity in the vaccinated, evidence that vaccines may not prevent transmission and inequity in vaccine distribution have driven continued development of vaccines against SARS-CoV-2 to address these public health needs. In this report, we evaluated a novel self-amplifying replicon RNA vaccine against SARS-CoV-2 in a pigtail macaque model of COVID-19 disease. We found that this vaccine elicited strong binding and neutralizing antibody responses against homologous virus. We also observed broad binding antibody against heterologous contemporary and ancestral strains, but neutralizing antibody responses were primarily targeted to the vaccine-homologous strain. While binding antibody responses were sustained, neutralizing antibody waned to undetectable levels in some animals after six months but were rapidly recalled and conferred protection from disease when the animals were challenged 7 months after vaccination as evident by reduced viral replication and pathology in the lower respiratory tract, reduced viral shedding in the nasal cavity and lower concentrations of pro-inflammatory cytokines in the lung. Cumulatively, our data demonstrate in pigtail macaques that a self-amplifying replicon RNA vaccine can elicit durable and protective immunity to SARS-CoV-2 infection. Furthermore, these data provide evidence that this vaccine can provide durable protective efficacy and reduce viral shedding even after neutralizing antibody responses have waned to undetectable levels.


Subject(s)
COVID-19 Vaccines , mRNA Vaccines , COVID-19 Vaccines/immunology , Macaca nemestrina , Lung/immunology , Lung/virology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/immunology , COVID-19/transmission
18.
JAMIA Open ; 6(1): ooad016, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36926600

ABSTRACT

Objectives: Post-acute sequalae of SARS-CoV-2 infection (PASC) is not well defined in pediatrics given its heterogeneity of presentation and severity in this population. The aim of this study is to use novel methods that rely on data mining approaches rather than clinical experience to detect conditions and symptoms associated with pediatric PASC. Materials and Methods: We used a propensity-matched cohort design comparing children identified using the new PASC ICD10CM diagnosis code (U09.9) (N = 1309) to children with (N = 6545) and without (N = 6545) SARS-CoV-2 infection. We used a tree-based scan statistic to identify potential condition clusters co-occurring more frequently in cases than controls. Results: We found significant enrichment among children with PASC in cardiac, respiratory, neurologic, psychological, endocrine, gastrointestinal, and musculoskeletal systems, the most significant related to circulatory and respiratory such as dyspnea, difficulty breathing, and fatigue and malaise. Discussion: Our study addresses methodological limitations of prior studies that rely on prespecified clusters of potential PASC-associated diagnoses driven by clinician experience. Future studies are needed to identify patterns of diagnoses and their associations to derive clinical phenotypes. Conclusion: We identified multiple conditions and body systems associated with pediatric PASC. Because we rely on a data-driven approach, several new or under-reported conditions and symptoms were detected that warrant further investigation.

19.
Transplant Cell Ther ; 29(5): 305-310, 2023 05.
Article in English | MEDLINE | ID: mdl-36736781

ABSTRACT

Infections with double-stranded DNA viruses are a common complication after hematopoietic stem cell transplantation (HSCT) and cause significant morbidity and mortality in the post-transplantation period. Both donor-derived (DD) and third-party (TP) virus-specific T cells (VSTs) have shown efficacy and safety in viral management following HSCT in children and young adults. Owing to a greater degree of HLA matching between the recipient and stem cell donor, DD VSTs potentially persist longer in circulation compared to TP VSTs, because they are collected from a well-matched donor. However, TP VSTs are more easily accessible, particularly for smaller transplantation centers that do not have VST manufacturing capabilities, and more economical than creating a customized product for each transplant recipient. We conducted the present study to compare clinical efficacy and safety outcomes for DD VSTs and TP VSTs in a large cohort of pediatric and young adult HSCT recipients and to determine whether DD VSTs are associated with improved outcomes owing to potentially longer persistence in the recipient's circulation. This retrospective cohort study included 145 patients who received VSTs at Cincinnati Children's Hospital Medical Center (CCHMC) between 2017 and 2021 for the treatment of adenovirus, BK virus, cytomegalovirus, and/or Epstein-Barr virus. Viruses were detected using quantitative polymerase chain reaction. Patients received VSTs on a DD (NCT02048332) or TP (NCT02532452) protocol, and VST products for both protocols were manufactured in an identical fashion. The primary study outcome was clinical response to VSTs, evaluated 4 weeks after VST administration, defined as decrease in viral load to under the inclusion thresholds, or resolution of symptoms of invasive viral infection, without the need for additional conventional antiviral medication following VST administration. Secondary outcomes included graft-versus-host-disease, transplant-associated thrombotic microangiopathy, renal function, hospital length of stay, and overall survival at 30 days and 100 days after VST administration and 1 year after HSCT. Statistical analysis was performed using the Fisher exact test or chi-square test. An unpaired t test was used to compare continuous variables. The study group comprised 77 patients in the DD cohort and 68 patients in the TP cohort. Eighteen patients in the TP cohort underwent HSCT at CCHMC, and the other 50 underwent HSCT at other institutions and presented to CCHMC solely for VST administration. There was no statistically significant difference in clinical response rates between DD and TP cohorts (65.6% versus 62.7%; odds ratio [OR], 1.162; 95% confidence interval [CI], .619 to 2.164; P = .747). There were no significant differences in secondary outcomes between the 2 cohorts. The percentage of patients requiring multiple infusions for a clinical response did not differ significantly between the DD and TP cohorts (38.2% versus 32.5%; OR, .780; 95% CI, .345 to 1.805; P = .666). We found no significant difference in clinical response rate between DD VSTs and TP VSTs and a similar safety profile. Our data suggest that TP VSTs may be sufficient to control viral infection until immune reconstitution occurs despite the potential for more rapid VST clearance compared to DD VSTs. The lack of significant differences between DD VSTs and TP VSTs is an important finding, indicating that it is not necessary for every transplant center to manufacture customized DD VSTs, and that TP VSTs are a satisfactory substitute.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Child , Humans , Young Adult , Hematopoietic Stem Cell Transplantation/adverse effects , Herpesvirus 4, Human , Retrospective Studies , T-Lymphocytes , Transplantation, Homologous , Virus Diseases/etiology , Virus Diseases/therapy
20.
Lancet Microbe ; 4(3): e171-e178, 2023 03.
Article in English | MEDLINE | ID: mdl-36739878

ABSTRACT

BACKGROUND: The recent Sudan virus (SUDV) outbreak in Uganda highlights the need for rapid response capabilities, including development of vaccines against emerging viruses with high public health impact. We aimed to develop a Sudan virus-specific vaccine suitable for emergency use during outbreaks. METHODS: We generated and characterised a vesicular stomatitis virus (VSV)-based vaccine, VSV- SUDV, and evaluated the protective efficacy following a single-dose vaccination against lethal SUDV infection in non-human primates (NHPs). We used male and female cynomolgus macaques (n=11) aged 6-11 years and weighing 3·8-9·0 kg. Animals received a 1 mL intramuscular injection for vaccination containing either 1 × 107 plaque forming units (PFU) VSV-SUDV or 1 × 107 PFU of a VSV-based vaccine against Marburg virus (control; five NHPs). NHPs were challenged intramuscularly 28 days after vaccination with 1 × 104 TCID50 SUDV-Gulu. We assessed anaesthetised NHPs on days 28, 21, 14, and 7 before challenge; days 0, 3, 6, 9, 14, 21, 28, and 35 after challenge; and at euthanasia (day 40 for survivors). As we repurposed NHPs from a successful VSV-Ebola virus (EBOV) vaccine efficacy study, we also investigated VSV-EBOV's cross-protective potential against SUDV challenge. FINDINGS: Of the six NHPs given VSV-SUDV, none showed any signs of disease in response to the challenge. Four of the five NHPs in the control group developed characteristic clinical signs of Sudan virus diseases. SUDV glycoprotein-specific IgG concentrations peaked 14 days after vaccination (titre of >1:10 000) and reached their highest concentrations at 6 days after challenge (1:25 600-1:102 400). Although the NHPs developed cross-reactive humoral responses to SUDV after VSV-EBOV vaccination and EBOV challenge, there was little cross-protection. INTERPRETATION: These data emphasise the need for species-specific vaccines for each human-pathogenic Ebolavirus. Furthermore, although previous VSV-EBOV immunity is boosted through VSV-SUDV vaccination, it only has a small effect on the immunogenicity and protective efficacy of VSV-SUDV vaccination against SUDV challenge. FUNDING: Intramural Research Program, US National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Vesicular Stomatitis , Viral Vaccines , United States , Animals , Male , Female , Hemorrhagic Fever, Ebola/prevention & control , Uganda , Macaca fascicularis , Vesiculovirus , Vesicular stomatitis Indiana virus
SELECTION OF CITATIONS
SEARCH DETAIL
...