Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Orthop Relat Res ; 477(3): 644-654, 2019 03.
Article in English | MEDLINE | ID: mdl-30601320

ABSTRACT

BACKGROUND: Although use of nonsteroidal antiinflammatory drugs and low-dose irradiation has demonstrated efficacy in preventing heterotopic ossification (HO) after THA and surgical treatment of acetabular fractures, these modalities have not been assessed after traumatic blast amputations where HO is a common complication that can arise in the residual limb. QUESTIONS/PURPOSES: The purpose of this study was to investigate the effectiveness of indomethacin and irradiation in preventing HO induced by high-energy blast trauma in a rat model. METHODS: Thirty-six Sprague-Dawley rats underwent hind limb blast amputation with a submerged explosive under water followed by irrigation and primary wound closure. One group (n = 12) received oral indomethacin for 10 days starting on postoperative Day 1. Another group (n = 12) received a single dose of 8 Gy irradiation to the residual limb on postoperative Day 3. A control group (n = 12) did not receive either. Wound healing and clinical course were monitored in all animals until euthanasia at 24 weeks. Serial radiographs were taken immediately postoperatively, at 10 days, and every 4 weeks thereafter to monitor the time course of ectopic bone formation until euthanasia. Five independent graders evaluated the 24-week radiographs to quantitatively assess severity and qualitatively assess the pattern of HO using a modified Potter scale from 0 to 3. Assessment of grading reproducibility yielded a Fleiss statistic of 0.41 and 0.37 for severity and type, respectively. By extrapolation from human clinical trials, a minimum clinically important difference in HO severity was empirically determined to be two full grades or progression of absolute grade to the most severe. RESULTS: We found no differences in mean HO severity scores among the three study groups (indomethacin 0.90 ± 0.46 [95% confidence interval {CI}, 0.60-1.19]; radiation 1.34 ± 0.59 [95% CI, 0.95-1.74]; control 0.95 ± 0.55 [95% CI, 0.60-1.30]; p = 0.100). For qualitative HO type scores, the radiation group had a higher HO type than both indomethacin and controls, but indomethacin was no different than controls (indomethacin 1.08 ± 0.66 [95% CI, 0.67-1.50]; radiation 1.89 ± 0.76 [95% CI, 1.38-2.40]; control 1.10 ± 0.62 [95% CI, 0.70-1.50]; p = 0.013). The lower bound of the 95% CI on mean severity in the indomethacin group and the upper bound of the radiation group barely spanned a full grade and involved only numeric grades < 2, suggesting that even if a small difference in severity could be detected, it would be less than our a priori-defined minimum clinically important difference and any differences that might be present are unlikely to be clinically meaningful. CONCLUSIONS: This work unexpectedly demonstrated that, compared with controls, indomethacin and irradiation provide no effective prophylaxis against HO in the residual limb after high-energy blast amputation in a rat model. Such an observation is contrary to the civilian experience and may be potentially explained by either a different pathogenesis for blast-induced HO or a stimulus that overwhelms conventional regimens used to prevent HO in the civilian population. CLINICAL RELEVANCE: HO in the residual limb after high-energy traumatic blast amputation will likely require novel approaches for prevention and management.


Subject(s)
Amputation, Traumatic/therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Blast Injuries/therapy , Indomethacin/pharmacology , Ossification, Heterotopic/prevention & control , Radiation Dosage , Amputation, Traumatic/etiology , Animals , Blast Injuries/etiology , Disease Models, Animal , Male , Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/etiology , Rats, Sprague-Dawley , Time Factors , Wound Healing/drug effects , Wound Healing/radiation effects
2.
Clin Orthop Relat Res ; 476(10): 2076-2090, 2018 10.
Article in English | MEDLINE | ID: mdl-30024459

ABSTRACT

BACKGROUND: External beam irradiation is an accepted treatment for skeletal malignancies. Radiation acts on both cancerous and normal cells and, depending on the balance of these effects, may promote or impair bone healing after pathologic fracture. Previous studies suggest an adverse effect of radiation on endochondral ossification, but the existence of differential effects of radiation on the two distinct bone healing pathways is unknown. QUESTIONS/PURPOSES: The purpose of this study was to investigate the differential effects of external beam irradiation on endochondral compared with intramembranous ossification with intramedullary nail and plate fixation of fractures inducing the two respective osseous healing pathways through assessment of (1) bone biology by histomorphometric analysis of cartilage area and micro-CT volumetric assessment of the calcified callus; and (2) mechanical properties of the healing fracture by four-point bending failure analysis of bending stiffness and strength. METHODS: Thirty-six male Sprague-Dawley rats underwent bilateral iatrogenic femur fracture: one side was repaired with an intramedullary nail and the other with compression plating. Three days postoperatively, half (n = 18) received 8-Gray external beam irradiation to each fracture. Rodents were euthanized at 1, 2, and 4 weeks postoperatively (n = 3/group) for quantitative histomorphometry of cartilage area and micro-CT assessment of callus volume. The remaining rodents were euthanized at 3 months (n = 9/group) and subjected to four-point bending tests to assess stiffness and maximum strength. RESULTS: Nailed femurs that were irradiated exhibited a reduction in cartilage area at both 2 weeks (1.08 ± 1.13 mm versus 37.32 ± 19.88 mm; 95% confidence interval [CI] of the difference, 4.32-68.16 mm; p = 0.034) and 4 weeks (4.60 ± 3.97 mm versus 39.10 ± 16.28 mm; 95% CI of the difference, 7.64-61.36 mm; p = 0.023) compared with nonirradiated fractures. There was also a decrease in the volume ratio of calcified callus at 4 weeks (0.35 ± 0.08 versus 0.51 ± 0.05; 95% CI of the difference, 0.01-0.31; p = 0.042) compared with nonirradiated fractures. By contrast, there was no difference in cartilage area or calcified callus between irradiated and nonirradiated plated femurs. The stiffness (128.84 ± 76.60 N/mm versus 26.99 ± 26.07 N/mm; 95% CI of the difference, 44.67-159.03 N/mm; p = 0.012) and maximum strength (41.44 ± 22.06 N versus 23.75 ± 11.00 N; 95% CI of the difference, 0.27-35.11 N; p = 0.047) of irradiated plated femurs was greater than the irradiated nailed femurs. However, for nonirradiated femurs, the maximum strength of nailed fractures (36.05 ± 17.34 N versus 15.63 ± 5.19 N; 95% CI of the difference, 3.96-36.88 N; p = 0.022) was greater than plated fractures, and there was no difference in stiffness between the nailed and plated fractures. CONCLUSIONS: In this model, external beam irradiation was found to preferentially inhibit endochondral over intramembranous ossification with the greatest impairment in healing of radiated fractures repaired with intramedullary nails compared with those fixed with plates. Future work with larger sample sizes might focus on further elucidating the observed differences in mechanical properties. CLINICAL RELEVANCE: This work suggests that there may be a rationale for compression plating rather than intramedullary nailing of long bone fractures in select circumstances where bony union is desirable, adjunctive radiation treatment is required, and bone stock is sufficient for plate and screw fixation.


Subject(s)
Femoral Fractures/therapy , Femur/radiation effects , Femur/surgery , Fracture Healing/radiation effects , Osteogenesis/radiation effects , Radiation Dosage , Animals , Bone Nails , Bone Plates , Combined Modality Therapy , Disease Models, Animal , Femoral Fractures/diagnostic imaging , Femoral Fractures/physiopathology , Femur/diagnostic imaging , Femur/physiopathology , Fracture Fixation, Intramedullary/instrumentation , Male , Rats, Sprague-Dawley , Time Factors , X-Ray Microtomography
3.
J Bone Joint Surg Am ; 99(21): 1851-1858, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088040

ABSTRACT

BACKGROUND: Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. METHODS: In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. RESULTS: All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then demonstrated signs of variable regression. Histological analysis of interval biopsy and postmortem specimens demonstrated tissue damage with inflammatory cells, cell death, and dystrophic calcification. CONCLUSIONS: Pulsatile lavage of musculoskeletal wounds can cause irreversible insult to tissue, resulting in myonecrosis and dystrophic calcification. CLINICAL RELEVANCE: The benefits and offsetting harm of pulsatile lavage (20 psi) should be considered before its routine use in the management of musculoskeletal wounds.


Subject(s)
Blast Injuries/therapy , Calcinosis/etiology , Muscle, Skeletal/pathology , Necrosis/etiology , Therapeutic Irrigation/methods , Animals , Calcinosis/pathology , Disease Models, Animal , Hindlimb/injuries , Male , Necrosis/pathology , Rats , Rats, Sprague-Dawley , Therapeutic Irrigation/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...