Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(4)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37189750

ABSTRACT

The survival rate of patients with osteosarcoma (OS) has not improved over the last 30 years. Mutations in the genes TP53, RB1 and c-Myc frequently occur in OS and enhance RNA Polymerase I (Pol I) activity, thus supporting uncontrolled cancer cell proliferation. We therefore hypothesised that Pol I inhibition may be an effective therapeutic strategy for this aggressive cancer. The Pol I inhibitor CX-5461 has demonstrated therapeutic efficacy in different cancers in pre-clinical and phase I clinical trials; thus, the effects were determined on ten human OS cell lines. Following characterisation using genome profiling and Western blotting, RNA Pol I activity, cell proliferation and cell cycle progression were evaluated in vitro, and the growth of TP53 wild-type and mutant tumours was measured in a murine allograft model and in two human xenograft OS models. CX-5461 treatment resulted in reduced ribosomal DNA (rDNA) transcription and Growth 2 (G2)-phase cell cycle arrest in all OS cell lines. Additionally, tumour growth in all allograft and xenograft OS models was effectively suppressed without apparent toxicity. Our study demonstrates the efficacy of Pol I inhibition against OS with varying genetic alterations. This study provides pre-clinical evidence to support this novel therapeutic approach in OS.

2.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: mdl-36944419

ABSTRACT

Povidone-iodine (PVP-I) inactivates a broad range of pathogens. Despite its widespread use over decades, the safety of PVP-I remains controversial. Its extended use in the current SARS-CoV-2 virus pandemic urges the need to clarify safety features of PVP-I on a cellular level. Our investigation in epithelial, mesothelial, endothelial, and innate immune cells revealed that the toxicity of PVP-I is caused by diatomic iodine (I2), which is rapidly released from PVP-I to fuel organic halogenation with fast first-order kinetics. Eukaryotic toxicity manifests at below clinically used concentrations with a threshold of 0.1% PVP-I (wt/vol), equalling 1 mM of total available I2 Above this threshold, membrane disruption, loss of mitochondrial membrane potential, and abolition of oxidative phosphorylation induce a rapid form of cell death we propose to term iodoptosis. Furthermore, PVP-I attacks lipid rafts, leading to the failure of tight junctions and thereby compromising the barrier functions of surface-lining cells. Thus, the therapeutic window of PVP-I is considerably narrower than commonly believed. Our findings urge the reappraisal of PVP-I in clinical practice to avert unwarranted toxicity whilst safeguarding its benefits.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Iodine , Humans , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Iodine/pharmacology , SARS-CoV-2 , Cell Death
3.
Transl Res ; 258: 60-71, 2023 08.
Article in English | MEDLINE | ID: mdl-36921796

ABSTRACT

DICER1 mutations predispose to increased risk for various cancers, particularly pleuropulmonary blastoma (PPB), the commonest lung malignancy of childhood. There is a paucity of directly actionable molecular targets as these tumors are driven by loss-of-function mutations of DICER1. Therapeutic development for PPB is further limited by a lack of biologically and physiologically-representative disease models. Given recent evidence of Dicer's role as a haploinsufficient tumor suppressor regulating RNA polymerase I (Pol I), Pol I inhibition could abrogate mutant Dicer-mediated accumulation of stalled polymerases to trigger apoptosis. Hence, we developed a novel subpleural orthotopic PPB patient-derived xenograft (PDX) model that retained both RNase IIIa and IIIb hotspot mutations and recapitulated the cardiorespiratory physiology of intra-thoracic disease, and with it evaluated the tolerability and efficacy of first-in-class Pol I inhibitor CX-5461. In PDX tumors, CX-5461 significantly reduced H3K9 di-methylation and increased nuclear p53 expression, within 24 hours' exposure. Following treatment at the maximum tolerated dosing regimen (12 doses, 30 mg/kg), tumors were smaller and less hemorrhagic than controls, with significantly decreased cellular proliferation, and increased apoptosis. As demonstrated in a novel intrathoracic tumor model of PPB, Pol I inhibition with CX-5461 could be a tolerable and clinically-feasible therapeutic strategy for mutant Dicer tumors, inducing antitumor effects by decreasing H3K9 methylation and enhancing p53-mediated apoptosis.


Subject(s)
Pulmonary Blastoma , RNA Polymerase I , Humans , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Tumor Suppressor Protein p53/genetics , Pulmonary Blastoma/genetics , Pulmonary Blastoma/metabolism , Pulmonary Blastoma/pathology , Carcinogenesis , Ribonuclease III/genetics , Ribonuclease III/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism
4.
Cell Rep ; 41(5): 111571, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36323262

ABSTRACT

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Subject(s)
Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction/genetics , Cell Nucleolus/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
5.
Genomics ; 114(4): 110430, 2022 07.
Article in English | MEDLINE | ID: mdl-35830947

ABSTRACT

Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA Copy Number Variations , DNA, Ribosomal/genetics , RNA, Ribosomal/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Invest New Drugs ; 40(3): 529-536, 2022 06.
Article in English | MEDLINE | ID: mdl-35201535

ABSTRACT

BACKGROUND: Uterine leiomyosarcoma is a rare aggressive smooth muscle cancer with poor survival rates. RNA Polymerase I (Pol I) activity is elevated in many cancers supporting tumour growth and prior studies in uterine leiomyosarcoma revealed enlarged nucleoli and upregulated Pol I activity-related genes. This study aimed to investigate the anti-tumour potential of CX-5461, a Pol I transcription inhibitor currently being evaluated in clinical trials for several cancers, against the human uterine leiomyosarcoma cell line, SK-UT-1. METHODS: SK-UT-1 was characterised using genome profiling and western blotting. The anti-tumour effects of CX-5461 were investigated using cell proliferation assays, expression analysis using qRT-PCR, and BrdU/PI based cell cycle analysis. RESULTS: Genetic analysis of SK-UT-1 revealed mutations in TP53, RB1, PTEN, APC and TSC1 & 2, all potentially associated with increased Pol I activity. Protein expression analysis showed dysregulated p53, RB1 and c-Myc. CX-5461 treatment resulted in an anti-proliferation response, G2 phase cell-cycle arrest and on-target activity demonstrated by reduced ribosomal DNA transcription. CONCLUSIONS: SK-UT-1 was confirmed as a representative model of uterine leiomyosarcoma and CX-5461 has significant potential as a novel adjuvant for this rare cancer.


Subject(s)
Benzothiazoles , Leiomyosarcoma , Naphthyridines , Uterine Neoplasms , Benzothiazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Female , Humans , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Leiomyosarcoma/metabolism , Naphthyridines/pharmacology , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/metabolism , Signal Transduction/drug effects , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
7.
Mol Neurodegener ; 16(1): 60, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465369

ABSTRACT

BACKGROUND: MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases including age-related macular degeneration (AMD), acting as post-transcriptional gene suppressors through their association with argonaute 2 (AGO2) - a key member of the RNA Induced Silencing Complex (RISC). Identifying the retinal miRNA/mRNA interactions in health and disease will provide important insight into the key pathways miRNA regulate in disease pathogenesis and may lead to potential therapeutic targets to mediate retinal degeneration. METHODS: To identify the active miRnome targetome interactions in the healthy and degenerating retina, AGO2 HITS-CLIP was performed using a rodent model of photoreceptor degeneration. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data was performed to identify the cellular location of AGO2 and key members of the microRNA targetome in the retina. AGO2 findings were verified by in situ hybridization (RNA) and immunohistochemistry (protein). RESULTS: Analysis revealed a similar miRnome between healthy and damaged retinas, however, a shift in the active targetome was observed with an enrichment of miRNA involvement in inflammatory pathways. This shift was further demonstrated by a change in the seed binding regions of miR-124-3p, the most abundant retinal AGO2-bound miRNA, and has known roles in regulating retinal inflammation. Additionally, photoreceptor cluster miR-183/96/182 were all among the most highly abundant miRNA bound to AGO2. Following damage, AGO2 expression was localized to the inner retinal layers and more in the OLM than in healthy retinas, indicating a locational miRNA response to retinal damage. CONCLUSIONS: This study provides important insight into the alteration of miRNA regulatory activity that occurs as a response to retinal degeneration and explores the miRNA-mRNA targetome as a consequence of retinal degenerations. Further characterisation of these miRNA/mRNA interactions in the context of the degenerating retina may provide an important insight into the active role these miRNA may play in diseases such as AMD.


Subject(s)
Eye Proteins/genetics , Macular Degeneration/metabolism , MicroRNAs/genetics , Retina/metabolism , Animals , Argonaute Proteins/metabolism , Disease Models, Animal , Eye Proteins/metabolism , High-Throughput Nucleotide Sequencing , Humans , Immunoprecipitation , Inflammation , Light/adverse effects , Macular Degeneration/genetics , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/isolation & purification , MicroRNAs/metabolism , Oxidative Stress , RNA-Induced Silencing Complex/metabolism , Retinal Degeneration/etiology , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Single-Cell Analysis , Transcriptome
8.
Genes (Basel) ; 12(5)2021 05 18.
Article in English | MEDLINE | ID: mdl-34069807

ABSTRACT

Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I transcription rate have long been documented during normal cell cycle progression, development and malignant transformation. This demonstrates how dynamic the nucleolar structure can be. Here, we will discuss how the structure of the rDNA loci, the nucleolus and the rate of Pol I transcription are important for dynamic regulation of global gene expression and genome stability, e.g., through the modulation of long-range genomic interactions with the suppressive NAD environment. These observations support an emerging paradigm whereby the rDNA repeats and the nucleolus play a key regulatory role in cellular homeostasis during normal development as well as disease, independent of their role in determining ribosome capacity and cellular growth rates.


Subject(s)
Genetic Loci/genetics , Ribosomes/genetics , Animals , Cell Cycle/genetics , Cell Nucleolus/genetics , Genome/genetics , Genomic Instability/genetics , Homeostasis/genetics , Humans , Transcription, Genetic/genetics
9.
Br J Cancer ; 124(3): 616-627, 2021 02.
Article in English | MEDLINE | ID: mdl-33173151

ABSTRACT

BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


Subject(s)
Benzothiazoles/pharmacology , Cystadenocarcinoma, Serous/drug therapy , DNA Damage/drug effects , Homologous Recombination , Naphthyridines/pharmacology , Ovarian Neoplasms/drug therapy , RNA Polymerase I/antagonists & inhibitors , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Drug Therapy, Combination , Female , G1 Phase Cell Cycle Checkpoints , Genes, BRCA2 , Humans , M Phase Cell Cycle Checkpoints , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Grading , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , RNA Interference , RNA Polymerase I/genetics
10.
EMBO J ; 39(21): e105111, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32945574

ABSTRACT

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Subject(s)
Neoplasms/metabolism , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , Ribosomes/metabolism , Transcription, Genetic/drug effects , Animals , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Naphthyridines/pharmacology , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors , RNA Polymerase I/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal , Ribosomes/drug effects , Transcriptome
11.
Cancer Res ; 80(17): 3706-3718, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32651259

ABSTRACT

The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where MYCN amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is "undruggable." Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach. Here, we show that MYCN-amplified neuroblastomas are characterized by elevated rates of protein synthesis and that high expression of ABCE1, a translation factor directly upregulated by N-MYC, is itself a strong predictor of poor clinical outcome. Despite the potent ability of N-MYC in heightening protein synthesis and malignant characteristics in cancer cells, suppression of ABCE1 alone selectively negated this effect, returning the rate of translation to baseline levels and significantly reducing the growth, motility, and invasiveness of MYCN-amplified neuroblastoma cells and patient-derived xenograft tumors in vivo. The growth of nonmalignant cells or MYCN-nonamplified neuroblastoma cells remained unaffected by reduced ABCE1, supporting a therapeutic window associated with targeting ABCE1. Neuroblastoma cells with c-MYC overexpression also required ABCE1 to maintain cell proliferation and translation. Taken together, ABCE1-mediated translation constitutes a critical process in the progression of N-MYC-driven and c-MYC-driven cancers that warrants investigations into methods of its therapeutic inhibition. SIGNIFICANCE: These findings demonstrate that N-MYC-driven cancers are reliant on elevated rates of protein synthesis driven by heightened expression of ABCE1, a vulnerability that can be exploited through suppression of ABCE1.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Gene Expression Regulation, Neoplastic/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , ATP-Binding Cassette Transporters/genetics , Animals , Disease Progression , Heterografts , Humans , Mice , Mice, Nude , N-Myc Proto-Oncogene Protein/metabolism , Protein Biosynthesis , RNA, Messenger
12.
Front Cell Dev Biol ; 8: 568, 2020.
Article in English | MEDLINE | ID: mdl-32719798

ABSTRACT

Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.

13.
Nat Commun ; 11(1): 2641, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457376

ABSTRACT

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.


Subject(s)
Benzothiazoles/pharmacology , Cystadenocarcinoma, Serous/drug therapy , DNA Damage , Naphthyridines/pharmacology , Ovarian Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , DNA Replication/drug effects , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Female , Heterografts , Homologous Recombination , Humans , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Models, Biological , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA Polymerase I/antagonists & inhibitors , Transcriptome
14.
BMC Mol Cell Biol ; 21(1): 24, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245408

ABSTRACT

BACKGROUND: Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS: We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS: Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.


Subject(s)
Phosphorylation , Receptors, Progesterone , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Shape , Energy Metabolism , Glycolysis , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/metabolism , Neoplasms , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Progesterone/biosynthesis , Receptors, Progesterone/metabolism
15.
Cells ; 9(2)2020 01 21.
Article in English | MEDLINE | ID: mdl-31973211

ABSTRACT

Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.


Subject(s)
Neoplasms/enzymology , Neoplasms/therapy , RNA Polymerase I/genetics , Transcription, Genetic , Drug Design , Humans , Neoplasms/genetics , Patient Satisfaction , RNA Polymerase I/metabolism , Ribosomes/metabolism
16.
Cell Death Differ ; 27(2): 725-741, 2020 02.
Article in English | MEDLINE | ID: mdl-31285545

ABSTRACT

Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation. While oncogene-induced senescence (OIS) driven by excessive RAS/ERK signaling has been well studied, little is known about the mechanisms underpinning the AKT-induced senescence (AIS) response. Here, we utilize a combination of transcriptome and metabolic profiling to identify key signatures required to maintain AIS. We also employ a whole protein-coding genome RNAi screen for AIS escape, validating a subset of novel mediators and demonstrating their preferential specificity for AIS as compared with OIS. As proof of concept of the potential to exploit the AIS network, we show that neurofibromin 1 (NF1) is upregulated during AIS and its ability to suppress RAS/ERK signaling facilitates AIS maintenance. Furthermore, depletion of NF1 enhances transformation of p53-mutant epithelial cells expressing activated AKT, while its overexpression blocks transformation by inducing a senescent-like phenotype. Together, our findings reveal novel mechanistic insights into the control of AIS and identify putative senescence regulators that can potentially be targeted, with implications for new therapeutic options to treat PI3K/AKT/mTORC1-driven cancers.


Subject(s)
Cellular Senescence/genetics , Proto-Oncogene Proteins c-akt/genetics , Cell Line , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Signal Transduction/genetics
17.
Nat Commun ; 10(1): 5026, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690716

ABSTRACT

The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets.


Subject(s)
Carcinogenesis/genetics , RNA, Long Noncoding/metabolism , Ribosomal Proteins/metabolism , Animals , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , E2F1 Transcription Factor/metabolism , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred BALB C , Mice, Nude , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Prognosis , Protein Biosynthesis , Protein Stability , RNA, Long Noncoding/genetics , Transcription, Genetic , Up-Regulation/genetics
18.
Assay Drug Dev Technol ; 16(6): 320-332, 2018.
Article in English | MEDLINE | ID: mdl-30148664

ABSTRACT

The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease. Traditionally, it has been difficult to develop high-throughput image analysis pipelines to measure nucleolar changes due to the broad range of morphologies observed. In this study, we describe a simple high-content image analysis algorithm using Harmony software (PerkinElmer), with a PhenoLOGIC™ machine-learning component, that can measure and classify three different nucleolar morphologies based on nucleolin and fibrillarin staining ("normal," "peri-nucleolar rings" and "dispersed"). We have utilized this algorithm to determine the changes in these classes of nucleolar morphologies over time with drugs known to alter nucleolar structure. This approach could be further adapted to include other parameters required for the identification of new therapies that directly target the nucleolus.


Subject(s)
Cell Nucleolus/pathology , High-Throughput Screening Assays , A549 Cells , Algorithms , Cell Nucleolus/metabolism , Humans , Machine Learning , Oxidative Stress , Software , Tumor Cells, Cultured
19.
Bioessays ; 40(5): e1700233, 2018 05.
Article in English | MEDLINE | ID: mdl-29603296

ABSTRACT

Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.


Subject(s)
Cell Nucleolus/metabolism , Ribosomes/metabolism , Humans , Neoplasms/metabolism , Nervous System Diseases/metabolism , Organelle Biogenesis
20.
World J Gastroenterol ; 23(13): 2276-2285, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28428707

ABSTRACT

Pancreatic ductal adenocarcinoma is a devastating disease with a poor prognosis regardless of stage. To date the mainstay of therapy for advanced disease has been chemotherapy with little incremental improvements in outcome. Despite extensive research investigating new treatment options the current practices continue to utilise fluorouracil or gemcitabine containing combinations. The need for novel therapeutic approaches is mandated by the ongoing poor survival rates associated with this disease. One such approach may include manipulation of ribosome biogenesis and the nucleolar stress response, which has recently been applied to haematological malignancies such as lymphoma and prostate cancer with promising results. This review will focus on the current therapeutic options for pancreatic ductal adenocarcinoma and the complexities associated with developing novel treatments, with a particular emphasis on the role of the nucleolus as a treatment strategy.


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , Pancreatic Neoplasms/therapy , Humans , Organelle Biogenesis , Ribosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...