Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 7(8): e523, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37638230

ABSTRACT

Over a decade ago, three independent studies reported that pathogen- and herbivore-exposed Arabidopsis thaliana produces primed progeny with increased resistance. Since then, heritable induced resistance (h-IR) has been reported across numerous plant-biotic interactions, revealing a regulatory function of DNA (de)methylation dynamics. However, the identity of the epi-alleles controlling h-IR and the mechanisms by which they prime defense genes remain unknown, while the evolutionary significance of the response requires confirmation. Progress has been hampered by the relatively high variability, low effect size, and sometimes poor reproducibility of h-IR, as is exemplified by a recent study that failed to reproduce h-IR in A. thaliana by Pseudomonas syringae pv. tomato (Pst). This study aimed to improve h-IR effect size and reproducibility in the A. thaliana-Pst interaction. We show that recurrent Pst inoculations of seedlings result in stronger h-IR than repeated inoculations of older plants and that disease-related growth repression in the parents is a reliable marker for h-IR effect size in F1 progeny. Furthermore, RT-qPCR-based expression profiling of genes controlling DNA methylation maintenance revealed that the elicitation of strong h-IR upon seedling inoculations is marked by reduced expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) gene, which is maintained in the apical meristem and transmitted to F1 progeny. Two additional genes, MET1 and CHROMOMETHYLASE3 (CMT3), displayed similar transcriptional repression in progeny from seedling-inoculated plants. Thus, reduced expression of DDM1, MET1, and CMT3 can serve as a marker of robust h-IR in F1 progeny. Our report offers valuable information and markers to improve the effect size and reproducibility of h-IR in the A. thaliana-Pst model interaction.

2.
Nat Plants ; 9(1): 81-95, 2023 01.
Article in English | MEDLINE | ID: mdl-36604579

ABSTRACT

Stress can have long-lasting impacts on plants. Here we report the long-term effects of the stress hormone jasmonic acid (JA) on the defence phenotype, transcriptome and DNA methylome of Arabidopsis. Three weeks after transient JA signalling, 5-week-old plants retained induced resistance (IR) against herbivory but showed increased susceptibility to pathogens. Transcriptome analysis revealed long-term priming and/or upregulation of JA-dependent defence genes but repression of ethylene- and salicylic acid-dependent genes. Long-term JA-IR was associated with shifts in glucosinolate composition and required MYC2/3/4 transcription factors, RNA-directed DNA methylation, the DNA demethylase ROS1 and the small RNA (sRNA)-binding protein AGO1. Although methylome analysis did not reveal consistent changes in DNA methylation near MYC2/3/4-controlled genes, JA-treated plants were specifically enriched with hypomethylated ATREP2 transposable elements (TEs). Epigenomic characterization of mutants and transgenic lines revealed that ATREP2 TEs are regulated by RdDM and ROS1 and produce 21 nt sRNAs that bind to nuclear AGO1. Since ATREP2 TEs are enriched with sequences from IR-related defence genes, our results suggest that AGO1-associated sRNAs from hypomethylated ATREP2 TEs trans-regulate long-lasting memory of JA-dependent immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Demethylation , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/pharmacology , Arabidopsis/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , RNA/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...