Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Oral Investig ; 25(4): 2183-2190, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32975705

ABSTRACT

OBJECTIVES: Evaluate the effect of dentifrices or gels containing MMP inhibitors on dentine loss in situ. MATERIALS AND METHODS: Acrylic palatal appliances containing bovine dentine blocks were divided into two rows, corresponding to the groups erosion (ERO) and erosion associated with abrasion (ERO+ABR). For ERO, the appliances were immersed in a cola drink for 5 min, 4 times/day, while for ERO+ABR, the blocks were brushed for 15 sec with a dentifrice slurry after the second and third erosive challenges. Ten volunteers took part in study 1 (S1), where the dentifrices evaluated contained 1100 ppm fluoride as NaF, 0.61% green tea extract, or 0.012% chlorhexidine digluconate. Thirteen volunteers participated in study 2 (S2), in which the treatment was performed only once (1 min) with gels containing 400 µM EGCG (EGCG400), 0.012% chlorhexidine, 1 mM FeSO4, 1.23% F (NaF), placebo, or received no treatment. Dentine loss was analyzed by profilometry (µm). RESULTS: Regarding S1, ERO+ABR induced significantly higher dentine loss compared with ERO and all dentifrices tested led to significantly lower dentine loss when compared with placebo. For S2, regardless of the conditions or times of evaluation, gels containing EGCG, CHX, or FeSO4 led to significantly less wear compared with the other groups. CONCLUSION: Both dentifrices and gels containing MMP inhibitors significantly reduced dentine loss. CLINICAL RELEVANCE: Dentifrices and gels containing MMP inhibitors are able to increase the protection against dentine wear, although gels have a better effect when compared with fluoride gel, lasting up to 10 days after a single application.


Subject(s)
Dentifrices , Tooth Abrasion , Tooth Erosion , Animals , Cattle , Dentifrices/pharmacology , Dentin , Fluorides , Gels , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Sodium Fluoride/pharmacology , Tooth Erosion/prevention & control
2.
J Appl Oral Sci ; 24(1): 61-6, 2016.
Article in English | MEDLINE | ID: mdl-27008258

ABSTRACT

UNLABELLED: The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. MATERIAL AND METHODS: Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). RESULTS: The mean wear values (µm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. CONCLUSION: The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion.


Subject(s)
Dentin/drug effects , Matrix Metalloproteinase Inhibitors/chemistry , Tooth Abrasion/prevention & control , Tooth Erosion/prevention & control , Toothpastes/chemistry , Analysis of Variance , Carbonated Beverages , Chlorhexidine/chemistry , Humans , Materials Testing , Random Allocation , Saliva, Artificial/chemistry , Surface Properties/drug effects , Time Factors , Toothbrushing
3.
Arch Oral Biol ; 65: 66-71, 2016 May.
Article in English | MEDLINE | ID: mdl-26867224

ABSTRACT

OBJECTIVE: To evaluate cytotoxicity and effect on protease activity of epigallocatechin-gallate extracted from experimental restorative dental copolymers in comparison to the control compound chlorhexidine. METHODS: Copolymer disks were prepared from bis-GMA/TEGDMA (70/30 mol%) containing no compound (control) or 1% w/w of either epigallocatechin-gallate or chlorhexidine. MDPC-23 odontoblast-like cells were seeded with the copolymer extracts leached out into deionized water. Cell metabolic activity was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay at 24, 48, 72 h. Inhibition of protease activity by resin extracts was measured by a collagenolytic/genatinolytic enzyme activity assay and gelatin zymography. Data for MTT and protease inhibition were analyzed using two-way ANOVA followed by Tukey or Bonferroni post hoc tests (α=0.05). RESULTS: The MTT revealed that at 72 h, extracts from control (16.7%) and chlorhexidine (22.3%) copolymers induced significant reduction in cell metabolism (p<0.05). All copolymer extracts caused enzymatic inhibition in a dose dependent manner (p<0.01). Even when highly diluted, epigallocatechin-gallate extract had a significant antiproteolytic activity (p<0.05). Zymograms showed that all extracts reduced activity of MMP-2 and MMP-9 (pro- and active forms), with MMP-9 exhibiting the highest percentage inhibition revealed by densitometry. CONCLUSIONS: Epigallocatechin-gallate and chlorhexidine extracts did not exert cytotoxicity on evaluated cells when compared to control extracts. Both compounds retained antiproteolytic activity after extraction from a dental copolymer. CLINICAL SIGNIFICANCE: Once extracted from a dental copolymer, epigallocatechin-gallate is not cytotoxic and retains antiproteolytic activity. These results may allow incorporation of epigallocatechin-gallate as a natural-safe alternative to chlorhexidine in functionalized restorative materials.


Subject(s)
Catechin/analogs & derivatives , Composite Resins/administration & dosage , Peptide Hydrolases/metabolism , Polymers/administration & dosage , Protease Inhibitors/administration & dosage , Animals , Catechin/administration & dosage , Catechin/chemistry , Chlorhexidine/chemistry , Chlorhexidine/pharmacology , Composite Resins/chemistry , Dental Caries , Dental Materials/pharmacology , Dentin/drug effects , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/drug effects , Mice , Odontoblasts/drug effects , Polymers/chemistry , Protease Inhibitors/chemistry , Resins, Synthetic/pharmacology
4.
J. appl. oral sci ; 24(1): 61-66, Jan.-Feb. 2016. graf
Article in English | LILACS, BBO - Dentistry | ID: lil-777356

ABSTRACT

ABSTRACT The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Material and Methods Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). Results The mean wear values (μm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. Conclusion The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion.


Subject(s)
Humans , Tooth Abrasion/prevention & control , Tooth Erosion/prevention & control , Toothpastes/chemistry , Dentin/drug effects , Matrix Metalloproteinase Inhibitors/chemistry , Saliva, Artificial/chemistry , Surface Properties/drug effects , Time Factors , Toothbrushing , Materials Testing , Carbonated Beverages , Random Allocation , Chlorhexidine/chemistry , Analysis of Variance
5.
J Appl Oral Sci ; 18(4): 316-34, 2010.
Article in English | MEDLINE | ID: mdl-20835565

ABSTRACT

Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e.g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments.


Subject(s)
Cariostatic Agents/therapeutic use , Dental Caries/prevention & control , Dentifrices/therapeutic use , Fluorides/therapeutic use , Animals , Dental Caries/physiopathology , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Reproducibility of Results , Tooth Demineralization/physiopathology , Tooth Demineralization/prevention & control , Tooth Remineralization
6.
J. appl. oral sci ; 18(4): 316-334, July-Aug. 2010. ilus, tab
Article in English | LILACS | ID: lil-557100

ABSTRACT

Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e.g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments.


Subject(s)
Animals , Humans , Cariostatic Agents/therapeutic use , Dental Caries/prevention & control , Dentifrices/therapeutic use , Fluorides/therapeutic use , Dose-Response Relationship, Drug , Dental Caries/physiopathology , Hydrogen-Ion Concentration , Reproducibility of Results , Tooth Remineralization , Tooth Demineralization/physiopathology , Tooth Demineralization/prevention & control
7.
J Appl Oral Sci ; 17(6): 560-4, 2009.
Article in English | MEDLINE | ID: mdl-20027426

ABSTRACT

OBJECTIVE: This in situ study evaluated the protective effect of green tea on dentin erosion (ERO) and erosion-abrasion (ABR). MATERIAL AND METHODS: Ten volunteers wore intraoral palatal appliances with bovine dentin specimens subjected to ERO or ERO + toothbrushing abrasion performed immediately (ERO+I-ABR) or 30 min after erosion (ERO+30-min-ABR). During 2 experimental 5-day crossover phases, the volunteers rinsed with green tea or water (control, 1 min) between each erosive (5 min, cola drink) and abrasive challenge (30 s, toothbrushing), 4x/day. Dentin wear was measured by profilometry. RESULTS: The green tea reduced the dentin wear significantly for all conditions compared to control. ERO+I-ABR led to significantly higher wear than ERO, but it was not significantly different from ERO+30-min-ABR. ERO+30-min-ABR provoked significant higher wear than ERO, only for the placebo treatment. CONCLUSIONS: From the results of the present study, it may be concluded that green tea reduces the dentin wear under erosive/abrasive conditions.


Subject(s)
Protective Agents/therapeutic use , Tea , Tooth Abrasion/prevention & control , Tooth Erosion/prevention & control , Adult , Animals , Carbonated Beverages/adverse effects , Cattle , Cross-Over Studies , Dentin/pathology , Hardness , Humans , Materials Testing , Toothbrushing/instrumentation , Water , Young Adult
8.
J. appl. oral sci ; 17(6): 560-564, Nov.-Dec. 2009. tab
Article in English | LILACS | ID: lil-534419

ABSTRACT

OBJECTIVE: This in situ study evaluated the protective effect of green tea on dentin erosion (ERO) and erosion-abrasion (ABR). MATERIAL AND METHODS: Ten volunteers wore intraoral palatal appliances with bovine dentin specimens subjected to ERO or ERO + toothbrushing abrasion performed immediately (ERO+I-ABR) or 30 min after erosion (ERO+30-min-ABR). During 2 experimental 5-day crossover phases, the volunteers rinsed with green tea or water (control, 1 min) between each erosive (5 min, cola drink) and abrasive challenge (30 s, toothbrushing), 4x/day. Dentin wear was measured by profilometry. RESULTS: The green tea reduced the dentin wear significantly for all conditions compared to control. ERO+I-ABR led to significantly higher wear than ERO, but it was not significantly different from ERO+30-min-ABR. ERO+30-min-ABR provoked significant higher wear than ERO, only for the placebo treatment. CONCLUSIONS: From the results of the present study, it may be concluded that green tea reduces the dentin wear under erosive/abrasive conditions.


Subject(s)
Adult , Animals , Cattle , Humans , Young Adult , Protective Agents/therapeutic use , Tea , Tooth Abrasion/prevention & control , Tooth Erosion/prevention & control , Cross-Over Studies , Carbonated Beverages/adverse effects , Dentin/pathology , Hardness , Materials Testing , Toothbrushing/instrumentation , Water , Young Adult
10.
In. Busato, Adair Luiz Stefanello. Dentística: filosofia, conceitos e prática clínica. São Paulo, Artes Médicas, 2005. p.147-201, ilus.
Monography in Portuguese | LILACS, BBO - Dentistry | ID: lil-416061
SELECTION OF CITATIONS
SEARCH DETAIL
...