Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 117(25): 14178-14186, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513706

ABSTRACT

The interaction of the neuronal protein α-synuclein with lipid membranes appears crucial in the context of Parkinson's disease, but the underlying mechanistic details, including the roles of different lipids in pathogenic protein aggregation and membrane disruption, remain elusive. Here, we used single-vesicle resolution fluorescence and label-free scattering microscopy to investigate the interaction kinetics of monomeric α-synuclein with surface-tethered vesicles composed of different negatively charged lipids. Supported by a theoretical model to account for structural changes in scattering properties of surface-tethered lipid vesicles, the data demonstrate stepwise vesicle disruption and asymmetric membrane deformation upon α-synuclein binding to phosphatidylglycerol vesicles at protein concentrations down to 10 nM (∼100 proteins per vesicle). In contrast, phosphatidylserine vesicles were only marginally affected. These insights into structural consequences of α-synuclein interaction with lipid vesicles highlight the contrasting roles of different anionic lipids, which may be of mechanistic relevance for both normal protein function (e.g., synaptic vesicle binding) and dysfunction (e.g., mitochondrial membrane interaction).


Subject(s)
Membrane Lipids/metabolism , Membranes/metabolism , alpha-Synuclein/metabolism , Fluoresceins , Humans , Kinetics , Lipid Bilayers/chemistry , Nerve Tissue Proteins/chemistry , Neurons/metabolism , Parkinson Disease/metabolism , Phosphatidylglycerols/chemistry , Protein Binding , alpha-Synuclein/genetics
2.
Phys Chem Chem Phys ; 22(16): 8781-8790, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32285050

ABSTRACT

Lipophilic carbocyanine dyes are widely used as fluorescent cell membrane probes in studies ranging from biophysics to cell biology. While they are extremely useful for qualitative observation of lipid structures, a major problem impairing quantitative studies is that the chemical environment of the lipid bilayer affects both the dye's insertion efficiency and photophysical properties. We present a systematic investigation of the sulphonated carbocyanine dye 3,3'-dioctadecyl-5,5'-di(4-sulfophenyl) (SP-DiO) and demonstrate how its insertion efficiency into pre-formed lipid bilayers and its photophysical properties therein determine its apparent fluorescence intensity in different lipid environments. For this purpose, we use large unilamellar vesicles (LUVs) made of lipids with distinct chain unsaturation, acyl chain length, head group charge, and with variation in membrane cholesterol content as models. Using a combination of absorbance, fluorescence emission, and fluorescence lifetime measurements we reveal that SP-DiO incorporates more efficiently into liquid disordered phases compared to gel phases. Moreover, incorporation into the latter phase is most efficient when the mismatch between the length of the lipid and dye hydrocarbon chains is small. Furthermore, SP-DiO incorporation is less efficient in LUVs composed of negatively charged lipids. Lastly, when cholesterol was included in the LUV membranes, we observed significant spectral shifts, consistent with dye aggregation. Taken together, our study highlights the complex interplay between membrane composition and labeling efficiency with lipophilic dyes and advocates for careful assessment of fluorescence data when attempting a quantitative analysis of fluorescence data with such molecules.

3.
Anal Chem ; 90(21): 13065-13072, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30350611

ABSTRACT

Over the last two decades, supported lipid bilayers (SLBs) have been extensively used as model systems to study cell membrane structure and function. While SLBs have been traditionally produced from simple lipid mixtures, there has been a recent surge in compositional complexity to better mimic cellular membranes and thereby bridge the gap between classic biophysical approaches and cell experiments. To this end, native cellular membrane derived SLBs (nSLBs) have emerged as a new category of SLBs. As a new type of biomimetic material, an analytical workflow must be designed to characterize its molecular composition and structure. Herein, we demonstrate how a combination of fluorescence microscopy, neutron reflectometry, and secondary ion mass spectrometry offers new insights on structure, composition, and quality of nSLB systems formed using so-called hybrid vesicles, which are a mixture of native membrane material and synthetic lipids. With this approach, we demonstrate that the nSLB formed a continuous structure with complete mixing of the synthetic and native membrane components and a molecular stoichiometry that essentially mirrors that of the hybrid vesicles. Furthermore, structural investigation of the nSLB revealed that PEGylated lipids do not significantly thicken the hydration layer between the bilayer and substrate when on silicon substrates; however, nSLBs do have more topology than their simpler, purely synthetic counterparts. Beyond new insights regarding the structure and composition of nSLB systems, this work also serves to guide future researchers in producing and characterizing nSLBs from their cellular membrane of choice.


Subject(s)
Biomimetic Materials/chemistry , Glycerophospholipids/chemistry , Lipid Bilayers/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Membrane/chemistry , Microscopy, Fluorescence/methods , Neutron Diffraction/methods , Spectrometry, Mass, Secondary Ion/methods , Spodoptera/chemistry
5.
Biointerphases ; 13(3): 03B408, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29421877

ABSTRACT

The organization of lipid membranes plays an important role in a wide range of biological processes at different length scales. Herein, the authors present a procedure based on time-of-flight secondary ion mass spectrometry (ToF-SIMS) to characterize the nanometer-scale ordering of lipids in lipid membrane structures on surfaces. While ToF-SIMS is a powerful tool for label-free analysis of lipid-containing samples, its limited spatial resolution prevents in-depth knowledge of how lipid properties affect the molecular assembly of the membrane. The authors overcome this limitation by measuring the formation of lipid dimers, originating in the same nanometer-sized primary ion impact areas. The lipid dimers reflect the local lipid environment and thus allow us to characterize the membrane miscibility on the nanometer level. Using this technique, the authors show that the chemical properties of the constituting lipids are critical for the structure and organization of the membrane on both the nanometer and micrometer length scales. Our results show that even at lipid surface compositions favoring two-phase systems, lipids are still extracted from solid, gel phase, domains into the surrounding fluid supported lipid bilayer surrounding the gel phase domains. The technique offers a means to obtain detailed knowledge of the chemical composition and organization of lipid membranes with potential application in systems where labeling is not possible, such as cell-derived supported lipid bilayers.


Subject(s)
Lipid Bilayers/chemistry , Lipids/analysis , Membranes/chemistry , Spectrometry, Mass, Secondary Ion , Surface Properties , Liposomes/chemistry
6.
J Am Chem Soc ; 135(7): 2759-68, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23350631

ABSTRACT

Mimicking green plants' and bacteria's extraordinary ability to absorb a vast number of photons and harness their energy is a longstanding goal in artificial photosynthesis. Resonance energy transfer among donor dyes has been shown to play a crucial role on the overall transfer of energy in the natural systems. Here, we present artificial, self-assembled, light-harvesting complexes consisting of DNA scaffolds, intercalated YO-PRO-1 (YO) donor dyes and a porphyrin acceptor anchored to a lipid bilayer, conceptually mimicking the natural light-harvesting systems. A model system consisting of 39-mer duplex DNA in a linear wire configuration with the porphyrin attached in the middle of the wire is primarily investigated. Utilizing intercalated donor fluorophores to sensitize the excitation of the porphyrin acceptor, we obtain an effective absorption coefficient 12 times larger than for direct excitation of the porphyrin. On the basis of steady-state and time-resolved emission measurements and Markov chain simulations, we show that YO-to-YO resonance energy transfer substantially contributes to the overall flow of energy to the porphyrin. This increase is explained through energy migration along the wire allowing the excited state energy to transfer to positions closer to the porphyrin. The versatility of DNA as a structural material is demonstrated through the construction of a more complex, hexagonal, light-harvesting scaffold yielding further increase in the effective absorption coefficient. Our results show that, by using DNA as a scaffold, we are able to arrange chromophores on a nanometer scale and in this way facilitate the assembly of efficient light-harvesting systems.


Subject(s)
DNA/chemistry , Light-Harvesting Protein Complexes , Light , Nanotechnology , Porphyrins/chemistry , Benzoxazoles/chemistry , Energy Transfer , Light-Harvesting Protein Complexes/chemical synthesis , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Molecular Structure , Photosynthesis , Porphyrins/chemical synthesis , Quinolinium Compounds/chemistry
7.
ACS Nano ; 7(1): 308-15, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23215045

ABSTRACT

We use single-molecule fluorescence microscopy to monitor individual hybridization reactions between membrane-anchored DNA strands, occurring in nanofluidic lipid monolayer films deposited on Teflon AF substrates. The DNA molecules are labeled with different fluorescent dyes, which make it possible to simultaneously monitor the movements of two different molecular species, thus enabling tracking of both reactants and products. We employ lattice diffusion simulations to determine reaction probabilities upon interaction. The observed hybridization rate of the 40-mer DNA was more than 2-fold higher than that of the 20-mer DNA. Since the lateral diffusion coefficient of the two different constructs is nearly identical, the effective molecule radius determines the overall kinetics. This implies that when two DNA molecules approach each other, hydrogen bonding takes place distal from the place where the DNA is anchored to the surface. Strand closure then propagates bidirectionally through a zipper-like mechanism, eventually bringing the lipid anchors together. Comparison with hybridization rates for corresponding DNA sequences in solution reveals that hybridization rates are lower for the lipid-anchored strands and that the dependence on strand length is stronger.


Subject(s)
DNA/chemistry , DNA/ultrastructure , In Situ Hybridization, Fluorescence/methods , Lipid Bilayers/chemistry , Membranes, Artificial , Molecular Imaging/methods , Spectrometry, Fluorescence/methods , Diffusion , Kinetics
8.
Small ; 7(22): 3178-85, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-21901828

ABSTRACT

Using the principle of self-assembly, a fluorescence-based photonic network is constructed with one input and two spatially and spectrally distinct outputs. A hexagonal DNA nanoassembly is used as a scaffold to host both the input and output dyes. The use of DNA to host functional groups enables spatial resolution on the level of single base pairs, well below the wavelength of light. Communication between the input and output dyes is achieved through excitation energy transfer. Output selection is achieved by the addition of a mediator dye intercalating between the DNA base pairs transferring the excitation energy from input to output through energy hopping. This creates a tool for selective excitation energy transfer on the nanometer scale with spectral and spatial control. The ability to direct excitation energy in a controlled way on the nanometer scale is important for the incorporation of photochemical processes in nanotechnology.


Subject(s)
DNA/metabolism , Nanotechnology/methods , Carbocyanines/metabolism , Computer Simulation , Fluorescein/metabolism , Fluorescence Resonance Energy Transfer
9.
Chemphyschem ; 11(11): 2424-31, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20572257

ABSTRACT

The UV-dissipative mechanisms of the eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and the 4,7-dideutero derivative (DHICA-d(2)) in buffered H(2)O or D(2)O have been characterized by using ultrafast time-resolved fluorescence spectroscopy. Excitation of the carboxylate anion form, the dominating state at neutral pH, leads to dual fluorescence. The band peaking at lambda=378 nm is caused by emission from the excited initial geometry. The second band around lambda=450 nm is owed to a complex formed between the mono-anion and specific buffer components. In the absence of complex formation, the mono-anion solely decays non-radiatively or by emission with a lifetime of about 2.1 ns. Excitation of the neutral carboxylic acid state, which dominates at acidic pH, leads to a weak emission around lambda=427 nm with a short lifetime of 240 ps. This emission originates from the zwitterionic state, formed upon excitation of the neutral state by sub-ps excited-state intramolecular proton transfer (ESIPT) between the carboxylic acid group and the indole nitrogen. Future studies will unravel whether this also occurs in larger building blocks and ESIPT is a built-in photoprotective mechanism in epidermal eumelanin.


Subject(s)
Indoles/chemistry , Melanins/chemistry , Ultraviolet Rays , Deuterium Oxide/chemistry , Hydrogen-Ion Concentration , Indoles/radiation effects , Protons , Spectrometry, Fluorescence , Water/chemistry
10.
Nano Lett ; 9(6): 2482-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19507892

ABSTRACT

We here present a two-dimensional (2D) micro/nano-fluidic technique where reactant-doped liquid-crystal films spread and mix on micro- and nanopatterned substrates. Surface-supported phospholipid monolayers are individually doped with complementary DNA molecules which hybridize when these lipid films mix. Using lipid films to convey reactants reduces the dimensionality of traditional 3D chemistry to 2D, and possibly to 1D by confining the lipid film to nanometer-sized lanes. The hybridization event was observed by FRET using single-molecule-sensitive confocal fluorescence detection. We could successfully detect hybridization in lipid streams on 250 nm wide lanes. Our results show that the number and density of reactants as well as sequence of reactant addition can be controlled within confined liquid crystal films, providing a platform for nanochemistry with potential for kinetic control.


Subject(s)
DNA/chemistry , Liquid Crystals/chemistry , Microfluidics/methods , Nanotechnology/methods , Nucleic Acid Hybridization/methods , Phospholipids/chemistry , Membranes, Artificial , Surface Properties
11.
J Am Chem Soc ; 130(47): 15889-95, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-18975869

ABSTRACT

DNA is a promising material for use in nanotechnology; the persistence length of double stranded DNA gives it a rigid structure in the several-nanometer regime, and its four letter alphabet enables addressability. We present the construction of a self-assembled DNA-based photonic wire capable of transporting excitation energy over a distance of more than 20 nm. The wire utilizes DNA as a scaffold for a chromophore with overlapping absorption and emission bands enabling fluorescence resonance energy transfer (FRET) between pairs of chromophores leading to sequential transfer of the excitation energy along the wire. This allows for the creation of a self-assembled photonic wire using straightforward construction and, in addition, allows for a large span in wire lengths without changing the basic components. The intercalating chromophore, YO, is chosen for its homotransfer capability enabling effective diffusive energy migration along the wire without loss in energy. In contrast to heterotransfer, i.e., multistep cascade FRET, where each step renders a photon with less energy than in the previous step, homotransfer preserves the energy in each step. By using injector and detector chromophores at opposite ends of the wire, directionality of the wire is achieved. The efficiency of the wire constructs is examined by steady-state and time-resolved fluorescence measurements and the energy transfer process is simulated using a Markov chain model. We show that it is possible to create two component DNA-based photonic wires capable of long-range energy transfer using a straightforward self-assembly approach.


Subject(s)
DNA/chemistry , Energy Transfer , Photons , Computer Simulation , Molecular Structure , Time Factors
12.
Article in English | MEDLINE | ID: mdl-18776565

ABSTRACT

DNA is a promising material for use in nanotechnology; the persistence length of double stranded DNA gives it a rigid structure in the several nanometer regime and its four letter alphabet enables addressability. We present the construction of a self-assembled DNA-based photonic wire capable of transporting excitation energy over a distance of more than 20 nm. Our results show that it is possible to create two component DNA-based photonic wires capable of long range energy transfer using a straightforward self-assembly approach.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Nanowires/chemistry , Fluorescence Resonance Energy Transfer , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...