Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechniques ; 40(3): 323-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16568821

ABSTRACT

Multiplex quencher extension (multiplex-QEXT) is a novel closed tube single-step method for detection and quantification of several single nucleotide polymorphisms (SNPs) simultaneously. The principle of multiplex-QEXT is that 5' reporter-labeled probes are 3' single-base-extended with TAMRA dideoxy nucleotides if the respective SNP alleles are present. TAMRA can serve as either an energy acceptor (quencher-based detection) or donor [fluorescence resonance energy transfer (FRET)-based detection] for a wide range of different reporter fluorochromes. The extension can therefore be recorded by the respective reporter fluorescence change. We evaluated multiplex-QEXT, analyzing four different SNP loci in the Listeria monocytogenes inlA gene. Probes labeled with the reporters 6-FAM, TET, VIC, and Alexa Fluor 594 were used. Responses for the fluorochromes 6-FAM, TET, and VIC were detected by quenching (decreased fluorescence), while the response for Alexa Fluor 594 was detected by FRET (increased fluorescence). We evaluated the SNP-allele pattern in 252 different L. monocytogenes strains. Multiplex-QEXT gave a good resolution, detecting seven major and five minor groups of L. monocytogenes. Comparison with serotyping showed that multiplex-QEXT gave better resolution. We also evaluated the quantitative aspects of multiplex-QEXT. Quantitative information was obtained for all the fluorochrome/probe combinations in the sample pools. The detection limits for 6-FAM, TET and Alexa Fluor 594 were the presence of the 10% target SNP alleles (P < 0.05), while the detection limit for VIC was the presence of the 5% target SNP alleles (P < 0.05). Currently, overlap in the fluorescence emission spectra is the limiting factor for the multiplexing potential of QEXT. With the emergence of new fluorochromes with narrow emission spectra, we foresee great potential for increasing the multiplex level in the future.


Subject(s)
Chromosome Mapping/methods , DNA Mutational Analysis/methods , Fluorescence Resonance Energy Transfer/methods , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Computer Systems
2.
Appl Environ Microbiol ; 70(8): 5010-8, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15294842

ABSTRACT

Modified-atmosphere packaging (MAP) of foods in combination with low-temperature storage extends product shelf life by limiting microbial growth. We investigated the microbial biodiversity of MAP salmon and coalfish by using an explorative approach and analyzing both the total amounts of bacteria and the microbial group composition (both aerobic and anaerobic bacteria). Real-time PCR analyses revealed a surprisingly large difference in the microbial loads for the different fish samples. The microbial composition was determined by examining partial 16S rRNA gene sequences from 180 bacterial isolates, as well as by performing terminal restriction fragment length polymorphism analysis and cloning 92 sequences from PCR products of DNA directly retrieved from the fish matrix. Twenty different bacterial groups were identified. Partial least-squares (PLS) regression was used to relate the major groups of bacteria identified to the fish matrix and storage time. A strong association of coalfish with Photobacterium phosphoreum was observed. Brochothrix spp. and Carnobacterium spp., on the other hand, were associated with salmon. These bacteria dominated the fish matrixes after a storage period. Twelve Carnobacterium isolates were identified as either Carnobacterium piscicola (five isolates) or Carnobacterium divergens (seven isolates), while the eight Brochothrix isolates were identified as Brochothrix thermosphacta by full-length 16S rRNA gene sequencing. Principal-component analyses and PLS analysis of the growth characteristics (with 49 different substrates) showed that C. piscicola had distinct substrate requirements, while the requirements of B. thermosphacta and C. piscicola were quite divergent. In conclusion, our explorative multivariate approach gave a picture of the total microbial biodiversity in MAP fish that was more comprehensive than the picture that could be obtained previously. Such information is crucial in controlled food production when, for example, the hazard analysis of critical control points principle is used.


Subject(s)
Bacteria/genetics , Ecosystem , Fishes/microbiology , Food Packaging/methods , Multivariate Analysis , RNA, Ribosomal, 16S/genetics , Salmon/microbiology , Animals , Atmosphere , Bacteria/classification , Bacteria/isolation & purification , Culture Media , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , DNA, Ribosomal/analysis , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...