Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
2.
Genet Med ; 25(11): 100950, 2023 11.
Article in English | MEDLINE | ID: mdl-37551667

ABSTRACT

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Micrognathism , Neurodevelopmental Disorders , Humans , Abnormalities, Multiple/genetics , Face , Micrognathism/genetics , Intellectual Disability/genetics , Intellectual Disability/complications , Facies , Phenotype , DNA-Binding Proteins/genetics , Transcription Factors/genetics
4.
J Clin Immunol ; 42(8): 1766-1777, 2022 11.
Article in English | MEDLINE | ID: mdl-35976468

ABSTRACT

Haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1) is a recently discovered autoinflammatory disorder with significant rheumatologic, immunologic, and hematologic manifestations. Here we report a case of SOCS1 haploinsufficiency in a 5-year-old child with profound arthralgias and immune-mediated thrombocytopenia unmasked by SARS-CoV-2 infection. Her clinical manifestations were accompanied by excessive B cell activity, eosinophilia, and elevated IgE levels. Uniquely, this is the first report of SOCS1 haploinsufficiency in the setting of a chromosomal deletion resulting in complete loss of a single SOCS1 gene with additional clinical findings of bone marrow hypocellularity and radiologic evidence of severe enthesitis. Immunologic profiling showed a prominent interferon signature in the patient's peripheral blood mononuclear cells, which were also hypersensitive to stimulation by type I and type II interferons. The patient showed excellent clinical and functional laboratory response to tofacitinib, a Janus kinase inhibitor that disrupts interferon signaling. Our case highlights the need to utilize a multidisciplinary diagnostic approach and consider a comprehensive genetic evaluation for inborn errors of immunity in patients with an atypical immune-mediated thrombocytopenia phenotype.


Subject(s)
COVID-19 , Myelodysplastic Syndromes , Thrombocytopenia , Female , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Haploinsufficiency , Leukocytes, Mononuclear/metabolism , Bone Marrow , SARS-CoV-2 , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Interferons/metabolism
5.
Am J Med Genet A ; 188(7): 2209-2216, 2022 07.
Article in English | MEDLINE | ID: mdl-35365979

ABSTRACT

Multilocus imprinting disturbances (MLID) have been associated with up to 12% of patients with Beckwith-Wiedemann syndrome, Silver-Russell syndrome, and pseudohypoparathyroidism type 1B (PHP1B). Single-gene defects affecting components of the subcortical maternal complex (SCMC) have been reported in cases with multilocus hypomethylation defects. We present a patient with speech and language impairment with mild Angelman syndrome (AS) features who demonstrates maternal hypomethylation at 15q11.2 (SNRPN) as well as 11p15.5 (KCNQ1OT1) imprinted loci, but normal methylation at 6q24.2 (PLAGL1), 7p12.1 (GRB10), 7q32.2 (MEST), 11p15.5 (H19), 14q32.2 (MEG3), 19q13.43 (PEG3), and 20q13.32 (GNAS and GNAS-AS1). The proband also has no copy number nor sequence variants within the AS imprinting center or in UBE3A. Maternal targeted next generation sequencing did not identify any pathogenic variants in ZPF57, NLRP2, NLRP5, NLRP7, KHDC3L, PADI6, TLE6, OOEP, UHRF1 or ZAR1. The presence of very delayed, yet functional speech, behavioral difficulties, EEG abnormalities but without clinical seizures, and normocephaly are consistent with the 15q11.2 hypomethylation defect observed in this patient. To our knowledge, this is the first report of MLID in a patient with mild, likely mosaic, Angelman syndrome.


Subject(s)
Angelman Syndrome , Beckwith-Wiedemann Syndrome , Intellectual Disability , Language Development Disorders , Adaptor Proteins, Signal Transducing/genetics , Angelman Syndrome/diagnosis , Angelman Syndrome/genetics , Beckwith-Wiedemann Syndrome/complications , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , CCAAT-Enhancer-Binding Proteins , Child , DNA Methylation , Genomic Imprinting , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Language Development Disorders/genetics , Ubiquitin-Protein Ligases
6.
Pediatr Neurol ; 126: 65-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34740135

ABSTRACT

BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation.


Subject(s)
Autism Spectrum Disorder/genetics , Cell Adhesion Molecules/physiology , Intellectual Disability/genetics , Nerve Tissue Proteins/physiology , Receptors, Cell Surface/genetics , Semaphorins/physiology , Adolescent , Adult , Autism Spectrum Disorder/physiopathology , Child , Child, Preschool , Genetic Association Studies , Humans , Intellectual Disability/physiopathology , Male , Signal Transduction/physiology , Young Adult
7.
Pediatr Neurol ; 119: 34-39, 2021 06.
Article in English | MEDLINE | ID: mdl-33845444

ABSTRACT

BACKGROUND: TANGO2-related metabolic encephalopathy and arrhythmias (TRMEA) is a rare, phenotypically heterogeneous, neurological disease affecting children. METHODS: We conducted a chart review of five children with molecularly confirmed TRMEA diagnosed at our institution and compiled pathogenic variant frequency and symptom prevalence from cases previously reported in the literature. RESULTS: Including those patients in our case series, 76 patients with TRMEA have been described. Developmental delay (93%) and/or regression (71%), spasticity (78%), and seizures (57%) are common in TRMEA and frequently precede life-threatening symptoms such as metabolic decompensation with lactic acidosis (83%), cardiomyopathy (38%), and cardiac arrhythmias (68%). Deletion of exons 3 to 9 is the most common pathogenic variant (39% of alleles). The majority of reported intragenic variants (17 of 27) result in disruption of the reading frame, and no clear genotype-phenotype correlations could be identified for those variants wherein the reading frame is maintained, highlighting instead the variable expressivity of the disease. CONCLUSIONS: Patients with TRMEA frequently experience life-threatening complications that are preceded by common neurological symptoms underscoring the need for pediatric neurologists to be familiar with this condition. Additional work pertaining to disease pathophysiology and potential therapeutics is needed.


Subject(s)
Arrhythmias, Cardiac , Brain Diseases, Metabolic , Genetic Association Studies , Adolescent , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Ataxia/epidemiology , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/physiopathology , Child , Child, Preschool , Cohort Studies , Developmental Disabilities/epidemiology , Female , Humans , Infant , Male , Prevalence , Rhabdomyolysis/epidemiology , Syndrome
8.
J Hum Genet ; 66(4): 439-443, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33067531

ABSTRACT

Kagami-Ogata syndrome (KOS14) is a rare imprinting disorder characterized by a unique constellation of phenotypes including bell-shaped small thorax with coat-hanger appearance of the ribs. We encountered an African American female infant with KOS14 phenotype and 46,XX,t(2;14)(q11.2;q32.2)mat. After excluding upd(14)pat and an epimutation (hypermethylation) and a deletion affecting the maternally derived 14q32.2 imprinted region, we performed whole-genome sequencing, revealing that the translocation was generated between noncoding region at 2q11.2 and intron 6 of MEG3 at 14q32.2. Subsequent Sanger sequencing for the fusion points showed that the chromosomal fusion on the der(2) chromosome occurred between Chr2:102,193,994 (bp) and Chr14:101,314,628 (bp) in association with an insertion of 5-bp segment of unknown origin and that on the der(14) chromosome took place between Chr14:101,314,627 (bp) and Chr2:102,193,995 (bp) in association with an insertion of 1-bp segment of unknown origin (according to GRCh37/hg19). The results, together with the previous data in patients with KOS14, imply that the MEG3 disruption by 46,XX,t(2;14)(q11.2;q32.2)mat caused silencing of all MEGs including RTL1as and resultant excessive RTL1 expression, leading to the development of KOS14. To our knowledge, while Robertsonian translocations involving chromosome 14 have been reported in KOS14, this is the first case of KOS14 caused by a chromosomal translocation involving the 14q32.2 imprinted region.


Subject(s)
Chromosome Disorders/pathology , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 2/genetics , RNA, Long Noncoding/genetics , Translocation, Genetic , Uniparental Disomy/pathology , Adolescent , Chromosome Disorders/genetics , Female , Humans , Infant, Newborn , Syndrome , Uniparental Disomy/genetics
9.
J Pediatr Hematol Oncol ; 43(3): e336-e340, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33122585

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome usually caused by heterozygous variants in ribosomal proteins (RP) and which leads to severe anemia. Genetic studies in DBA rely primarily on multigene panels that often result in variants of unknown significance. Our objective was to optimize polysome profiling to functionally validate new large subunit RP variants. We determined the optimal experimental conditions for B-cell polysome profiles then performed this analysis on 2 children with DBA and novel missense RPL5 (uL18) and RPL26 (uL24) variants of unknown significance. Both patients had reduced 60S and 80S fractions when compared with an unaffected parent consistent with a large ribosomal subunit defect. Polysome profiling using primary B-cells is an adjunctive tool that can assist in validation of large subunit RP variants of uncertain significance. Further studies are necessary to validate this method in patients with known DBA mutations, small RP subunit variants, and silent carriers.


Subject(s)
Anemia, Diamond-Blackfan/genetics , Polyribosomes/genetics , Ribosomal Proteins/genetics , B-Lymphocytes/metabolism , Child, Preschool , Female , Humans , Infant , Male , Mutation, Missense
10.
Pediatrics ; 145(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32234795

ABSTRACT

Pediatric thrombocytopenia has a wide differential diagnosis, and recently, genetic testing to identify its etiology has become more common. We present a case of a 16-year-old boy with a history of chronic moderate thrombocytopenia, who later developed constitutional symptoms and bilateral hand edema with cold exposure. Laboratory evaluation revealed evidence both of inflammation and elevated muscle enzymes. These abnormalities persisted over months. His thrombocytopenia was determined to be immune mediated. Imaging revealed lymphadenopathy and asplenia, and a muscle biopsy was consistent with tubular aggregate myopathy. Ophthalmology evaluation noted photosensitivity, pupillary miosis, and iris hypoplasia. Genetic testing demonstrated a pathogenic variant in STIM1 consistent with autosomal dominant Stormorken syndrome. Our case is novel because of the overlap of phenotypes ascribed to both gain-of-function and loss-of-function pathogenic variants in STIM1, thereby blurring the distinctions between these previously described syndromes. Pediatricians should consider checking muscle enzymes when patients present with thrombocytopenia and arthralgia, myalgia, and/or muscle weakness. Our case highlights the importance of both multidisciplinary care and genetic testing in cases of chronic unexplained thrombocytopenia. By understanding the underlying genetic mechanism to a patient's thrombocytopenia, providers are better equipped to make more precise medical management recommendations.

11.
J Clin Immunol ; 40(2): 267-276, 2020 02.
Article in English | MEDLINE | ID: mdl-31853824

ABSTRACT

We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation. Expression of the altered p.(Met1141Lys) variant in a PLCγ2-knockout DT40 cell line showed clearly enhanced BCR-triggered influx of external calcium when compared to control-transfected cells. Our results further expand the molecular basis of pediatric CVID and phenotypic spectrum of PLCγ2-related defects.


Subject(s)
B-Lymphocytes/immunology , Common Variable Immunodeficiency/diagnosis , Germ-Line Mutation/genetics , Immunologic Deficiency Syndromes/diagnosis , Mutation, Missense/genetics , Phospholipase C gamma/genetics , Autoimmunity/genetics , Calcium Signaling , Cell Line , Child , Child, Preschool , Female , Humans , Infant , Male , Phenotype , Protein Domains/genetics
12.
Pediatr Res ; 87(4): 735-739, 2020 03.
Article in English | MEDLINE | ID: mdl-31618753

ABSTRACT

BACKGROUND: As clinical exome sequencing (CES) becomes more common, understanding which patients are most likely to benefit and in what manner is critical for the general pediatrics community to appreciate. METHODS: Five hundred and twenty-three patients referred to the Pediatric Genetics clinic at Michigan Medicine were systematically phenotyped by the presence or absence of abnormalities for 13 body/organ systems by a Clinical Genetics team. All patients then underwent CES. RESULTS: Overall, 30% of patients who underwent CES had an identified pathogenic mutation. The most common phenotypes were developmental delay (83%), neuromuscular system abnormalities (81%), and multiple congenital anomalies (42%). In all, 67% of patients had a variant of uncertain significance (VUS) or gene of uncertain significance (GUS); 23% had no variants reported. There was a significant difference in the average number of body systems affected among these groups (pathogenic 5.89, VUS 6.0, GUS 6.12, and no variant 4.6; P < 0.00001). Representative cases highlight four ways in which CES is changing clinical pediatric practice. CONCLUSIONS: Patients with identified variants are enriched for multiple organ system involvement. Furthermore, our phenotyping provides broad insights into which patients are most likely to benefit from genetics referral and CES and how those results can help guide clinical practice more generally.


Subject(s)
Congenital Abnormalities/genetics , DNA Mutational Analysis , Exome Sequencing , Genetic Testing , Mutation , Congenital Abnormalities/diagnosis , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Phenotype , Predictive Value of Tests , Retrospective Studies
13.
Ann Neurol ; 86(6): 899-912, 2019 12.
Article in English | MEDLINE | ID: mdl-31600826

ABSTRACT

OBJECTIVE: Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS: We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS: Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION: Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019;86:899-912.


Subject(s)
Genetic Variation/genetics , High-Throughput Screening Assays/methods , Neurodevelopmental Disorders/genetics , Shab Potassium Channels/genetics , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Neurodevelopmental Disorders/diagnosis , Protein Structure, Secondary , Shab Potassium Channels/chemistry
14.
Genet Med ; 21(9): 2007-2014, 2019 09.
Article in English | MEDLINE | ID: mdl-30760892

ABSTRACT

PURPOSE: EPHB4 variants were recently reported to cause capillary malformation-arteriovenous malformation 2 (CM-AVM2). CM-AVM2 mimics RASA1-related CM-AVM1 and hereditary hemorrhagic telangiectasia (HHT), as clinical features include capillary malformations (CMs), telangiectasia, and arteriovenous malformations (AVMs). Epistaxis, another clinical feature that overlaps with HHT, was reported in several cases. Based on the clinical overlap of CM-AVM2 and HHT, we hypothesized that patients considered clinically suspicious for HHT with no variant detected in an HHT gene (ENG, ACVRL1, or SMAD4) may have an EPHB4 variant. METHODS: Exome sequencing or a next-generation sequencing panel including EPHB4 was performed on individuals with previously negative molecular genetic testing for the HHT genes and/or RASA1. RESULTS: An EPHB4 variant was identified in ten unrelated cases. Seven cases had a pathogenic EPHB4 variant, including one with mosaicism. Three cases had an EPHB4 variant of uncertain significance. The majority had epistaxis (6/10 cases) and telangiectasia (8/10 cases), as well as CMs. Two of ten cases had a central nervous system AVM. CONCLUSIONS: Our results emphasize the importance of considering CM-AVM2 as part of the clinical differential for HHT and other vascular malformation syndromes. Yet, these cases highlight significant differences in the cutaneous presentations of CM-AVM2 versus HHT.


Subject(s)
Capillaries/abnormalities , Genetic Testing , Receptor, EphB4/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Vascular Malformations/genetics , Activin Receptors, Type II/genetics , Adolescent , Capillaries/pathology , Child , Endoglin/genetics , Female , Humans , Male , Mutation , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/pathology , Vascular Malformations/pathology , Exome Sequencing
15.
J AAPOS ; 22(3): 183-187.e1, 2018 06.
Article in English | MEDLINE | ID: mdl-29635034

ABSTRACT

PURPOSE: To evaluate biomechanical corneal properties in children with osteogenesis imperfecta (OI). METHODS: A prospective, observational, case-control study was conducted on children 6-19 years of age diagnosed with OI. Patients with OI and healthy control subjects underwent complete ophthalmic examinations. Additional tests included Ocular Response Analyzer (ORA) and ultrasonic pachymetry. Primary outcomes were central corneal thickness (CCT), corneal hysteresis (CH), and corneal resistance factor (CRF). Intraocular pressure (IOP) was measured directly by either iCare or Goldmann applanation and indirectly by the ORA (Goldmann-correlated and corneal-compensated IOP). Statistically significant differences between OI and control groups were determined using independent samples t test. RESULTS: A total of 10 of 18 OI cases (mean age, 13 ± 4.37 years; 8 males) and 30 controls (mean age, 12.76 ± 2.62 years; 16 males) were able to complete the corneal biomechanics and pachymetry testing. Children with OI had decreased CH (8.5 ± 1.0 mm Hg vs 11.6 ± 1.2 mm Hg [P < 0.001]), CRF (9.0 ± 1.9 mm Hg vs 11.5 ± 1.5 [P < 0.001]) and CCT (449.8 ± 30.8 µm vs 568 ± 47.6 µm [P < 0.001]) compared to controls. The corneal-compensated IOP was significantly higher in OI cases (18.8 ± 3.1 mm Hg) than in controls (15.0 ± 1.6 mm Hg, P < 0.004), but there was no significant difference in Goldmann-correlated IOP (16.3 ± 4.2 mm Hg vs 15.8 ± 2.2 mm Hg). CONCLUSIONS: Collagen defects in OI alter corneal structure and biomechanics. Children with OI have decreased CH, CRF, and CCT, resulting in IOPs that are likely higher than measured by tonometry. These corneal alterations are present at a young age in OI. Affected individuals should be routinely screened for glaucoma and corneal pathologies.


Subject(s)
Cornea/physiopathology , Elasticity/physiology , Osteogenesis Imperfecta/physiopathology , Adolescent , Biomechanical Phenomena , Case-Control Studies , Child , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Corneal Pachymetry , Female , Humans , Intraocular Pressure/physiology , Male , Mutation , Osteogenesis Imperfecta/genetics , Prospective Studies , Young Adult
17.
Hum Mutat ; 39(1): 103-113, 2018 01.
Article in English | MEDLINE | ID: mdl-29024177

ABSTRACT

Loss-of-function mutations in the X-linked gene FLNA can lead to abnormal neuronal migration, vascular and cardiac defects, and congenital intestinal pseudo-obstruction (CIPO), the latter characterized by anomalous intestinal smooth muscle layering. Survival in male hemizygotes for such mutations is dependent on retention of residual FLNA function but it is unclear why a subgroup of males with mutations in the 5' end of the gene can present with CIPO alone. Here, we demonstrate evidence for the presence of two FLNA isoforms differing by 28 residues at the N-terminus initiated at ATG+1 and ATG+82 . A male with CIPO (c.18_19del) exclusively expressed FLNA ATG+82 , implicating the longer protein isoform (ATG+1 ) in smooth muscle development. In contrast, mutations leading to reduction of both isoforms are associated with compound phenotypes affecting the brain, heart, and intestine. RNA-seq data revealed three distinct transcription start sites, two of which produce a protein isoform utilizing ATG+1 while the third utilizes ATG+82 . Transcripts sponsoring translational initiation at ATG+1 predominate in intestinal smooth muscle, and are more abundant compared with the level measured in fibroblasts. Together these observations describe a new mechanism of tissue-specific regulation of FLNA that could reflect the differing mechanical requirements of these cell types during development.


Subject(s)
Filamins/genetics , Genetic Association Studies , Genetic Heterogeneity , Loss of Function Mutation , Phenotype , Transcription, Genetic , Adolescent , Brain/abnormalities , Brain/diagnostic imaging , Child , Conserved Sequence , DNA Mutational Analysis , Female , Filamins/chemistry , Filamins/metabolism , Gastrointestinal Tract/metabolism , Gene Expression , Humans , Magnetic Resonance Imaging , Male , Muscle, Smooth/metabolism , Protein Isoforms , Young Adult
18.
Am J Hum Genet ; 100(4): 650-658, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28343630

ABSTRACT

Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.


Subject(s)
Exons , Intellectual Disability/genetics , Mutation , Protein Phosphatase 2C/genetics , Adolescent , Cell Cycle , Child , Child, Preschool , Humans , Intellectual Disability/pathology , Young Adult
19.
Neurogenetics ; 17(3): 173-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27094857

ABSTRACT

Exome sequencing is an effective way to identify genetic causes of etiologically heterogeneous conditions such as developmental delay and intellectual disabilities. Using exome sequencing, we have identified four patients with similar phenotypes of developmental delay, intellectual disability, failure to thrive, hypotonia, ataxia, and tooth enamel defects who all have the same de novo R331W missense variant in C-terminal binding protein 1 (CTBP1). CTBP1 is a transcriptional regulator critical for development by coordinating different regulatory pathways. The R331W variant found in these patients is within the C-terminal portion of the PLDLS (Pro-Leu-Asp-Leu-Ser) binding cleft, which is the domain through which CTBP1, interacts with chromatin-modifying enzymes and mediates chromatin-dependent gene repression pathways. This is the first report of mutations within CTBP1 in association with any human disease.


Subject(s)
Alcohol Oxidoreductases/genetics , Ataxia/genetics , DNA-Binding Proteins/genetics , Dental Enamel/pathology , Developmental Disabilities/genetics , Muscle Hypotonia/genetics , Mutation, Missense , Adult , Ataxia/complications , Child , Developmental Disabilities/complications , Female , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Male , Muscle Hypotonia/complications , Exome Sequencing , Young Adult
20.
Hum Mol Genet ; 25(3): 597-608, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26647312

ABSTRACT

De novo truncating mutations in Additional sex combs-like 3 (ASXL3) have been identified in individuals with Bainbridge-Ropers syndrome (BRS), characterized by failure to thrive, global developmental delay, feeding problems, hypotonia, dysmorphic features, profound speech delays and intellectual disability. We identified three novel de novo heterozygous truncating variants distributed across ASXL3, outside the original cluster of ASXL3 mutations previously described for BRS. Primary skin fibroblasts established from a BRS patient were used to investigate the functional impact of pathogenic variants. ASXL3 mRNA transcripts from the mutated allele are prone to nonsense-mediated decay, and expression of ASXL3 is reduced. We found that ASXL3 interacts with BAP1, a hydrolase that removes mono-ubiquitin from histone H2A lysine 119 (H2AK119Ub1) as a component of the Polycomb repressive deubiquitination (PR-DUB) complex. A significant increase in H2AK119Ub1 was observed in ASXL3 patient fibroblasts, highlighting an important functional role for ASXL3 in PR-DUB mediated deubiquitination. Transcriptomes of ASXL3 patient and control fibroblasts were compared to investigate the impact of chromatin changes on transcriptional regulation. Out of 564 significantly differentially expressed genes (DEGs) in ASXL3 patient fibroblasts, 52% were upregulated and 48% downregulated. DEGs were enriched in molecular processes impacting transcriptional regulation, development and proliferation, consistent with the features of BRS. This is the first single gene disorder linked to defects in deubiquitination of H2AK119Ub1 and suggests an important role for dynamic regulation of H2A mono-ubiquitination in transcriptional regulation and the pathophysiology of BRS.


Subject(s)
Developmental Disabilities/genetics , Failure to Thrive/genetics , Histones/metabolism , Intellectual Disability/genetics , Language Development Disorders/genetics , Mutation , Transcription Factors/metabolism , Child, Preschool , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Failure to Thrive/metabolism , Failure to Thrive/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Genes, Dominant , Heterozygote , Histones/genetics , Humans , Intellectual Disability/metabolism , Intellectual Disability/pathology , Language Development Disorders/metabolism , Language Development Disorders/pathology , Male , Primary Cell Culture , Protein Binding , Syndrome , Transcription Factors/genetics , Transcriptome , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...