Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol ; 157(4): 1664-76, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21984725

ABSTRACT

Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.


Subject(s)
Arabidopsis/metabolism , Glucose/metabolism , Homeostasis/physiology , Monosaccharide Transport Proteins/metabolism , Seeds/metabolism , Arabidopsis/genetics , Beta vulgaris/genetics , Biological Transport , Carbohydrates/physiology , Gene Expression Regulation, Plant , Germination , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Monosaccharide Transport Proteins/genetics , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seeds/genetics , Vacuoles/metabolism
2.
Plant Cell Physiol ; 51(9): 1571-80, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20627950

ABSTRACT

AtSTP14, a new Arabidopsis sugar transporter, was identified and characterized on the molecular and physiological level. Reverse transcriptase-PCR analyses and reporter plants demonstrate high AtSTP14 expression levels in the seed endosperm and in cotyledons, as well as in green leaves. Thus, unlike previously characterized monosaccharide transporters, AtSTP14 is expressed in both source and sink tissues and represents the first monosaccharide transporter in the female gametophyte. Heterologous expression in yeast revealed that AtSTP14 does not transport glucose or fructose, but is the first plant transporter specific for galactose. Interestingly, AtSTP14 expression is regulated by factors which also induce cell wall degradation such as extended dark periods or changes in the sugar level, i.e. AtSTP14 is induced 3-fold by 24 h darkness and repressed 3-fold by 2% glucose and 2% sucrose. Two independent Atstp14 mutant lines were identified, but no effect on seed development or other differences during growth under normal conditions could be observed. A putative role for AtSTP14 in the recycling of cell wall-derived galactose during different developmental processes is discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Galactose/metabolism , Monosaccharide Transport Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Wall/metabolism , DNA, Complementary/genetics , DNA, Plant/genetics , Endosperm/metabolism , Gene Expression Regulation, Plant , Monosaccharide Transport Proteins/genetics , Mutagenesis, Insertional , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL